[Numpy-discussion] NumPy on 64-bit Linux (Opteron)

Bruce Southey southey at uiuc.edu
Tue Feb 8 07:07:11 CST 2005


Hi, 
Yes (Python 2.3.3 [GCC 3.3.3 (SuSE Linux)]) with Numeric 23.7 (clean install). 
 
It is to do with the function: 
extern PyObject * PyArray_Reshape(PyArrayObject *self, PyObject *shape) 
 
the variable s_known is not being assigned correctly (gets set to zero). I 
think that stems from this call that doesn't set the dimensions correctly: 
 
PyArray_As1D(&shape, (char **)&dimensions, &n, PyArray_LONG) 
 
dimensions in the second loop has value 0. 
 
Regards 
Bruce 
 
---- Original message ---- 
>Date: Tue, 8 Feb 2005 12:44:18 +0100 
>From: konrad.hinsen at laposte.net   
>Subject: [Numpy-discussion] NumPy on 64-bit Linux (Opteron)   
>To: numpy-discussion <numpy-discussion at lists.sourceforge.net> 
> 
>Is anyone here using NumPy on Opteron machines running Linux in 64 bit   
>mode? I am running into problems such as: 
> 
>Python 2.4 (#4, Jan 18 2005, 18:06:45) 
>[GCC 3.2.3 20030502 (Red Hat Linux 3.2.3-42)] on linux2 
>Type "help", "copyright", "credits" or "license" for more information. 
> >>> from Numeric import * 
> >>> a = arange(4) 
> >>> a 
>array([0, 1, 2, 3]) 
> >>> a.shape = (2, 2) 
>Traceback (most recent call last): 
>   File "<stdin>", line 1, in ? 
>ValueError: total size of new array must be unchanged 
> 
>This is with Python 2.4 and Numeric 23.7. Before looking into this   
>myself, I thought I'd ask here, perhaps someone has already found a   
>fix. 
> 
>Konrad. 
>-- 
>------------------------------------------------------------------------  
>------- 
>Konrad Hinsen 
>Laboratoire Leon Brillouin, CEA Saclay, 
>91191 Gif-sur-Yvette Cedex, France 
>Tel.: +33-1 69 08 79 25 
>Fax: +33-1 69 08 82 61 
>E-Mail: khinsen at cea.fr 
>------------------------------------------------------------------------  
>------- 
> 
> 
> 
>------------------------------------------------------- 
>SF email is sponsored by - The IT Product Guide 
>Read honest & candid reviews on hundreds of IT Products from real users. 
>Discover which products truly live up to the hype. Start reading now. 
>http://ads.osdn.com/?ad_id=6595&alloc_id=14396&op=click 
>_______________________________________________ 
>Numpy-discussion mailing list 
>Numpy-discussion at lists.sourceforge.net 
>https://lists.sourceforge.net/lists/listinfo/numpy-discussion 
 




More information about the Numpy-discussion mailing list