[Numpy-discussion] Re: ANN: numarray-1.2.3 -- segfault in in my C program

Sebastian Haase haase at msg.ucsf.edu
Fri Mar 4 11:48:32 CST 2005


On Friday 04 March 2005 07:03, Todd Miller wrote:
>From what you're showing me,  it looks like libnumarray initialization
>
> is failing which makes me suspect a corrupted numarray installation.

It understood it saying it fails in MyApp::OnInit omx_app.cpp:519 while doing:
NA_NewAllFromBuffer
(ndim=3, shape=0xbffff2e4, type=tFloat32, bufferObject=0x8a03988,
byteoffset=0,
bytestride=0, byteorder=0, aligned=1, writeable=1)

the "initialize libnumarray"-stuff is in the 20 lines above that.
Do you use  
NA_NewAllFromBuffer
anywhere ?

Thanks,
Sebastian Haase



> Here are some things to try:
>
> 1.  Completely delete your existing site-packages/numarray.  Also delete
> numarray/build then re-install numarray.
>
> 2.  Delete and re-install your extensions.  In principle,
> numarray-1.2.3 is supposed to be binary compatible with numarray-1.1.1
> but maybe I'm mistaken.
>
> 3.  Hopefully you won't get this far but... a python which works well
> with gdb can be built from source using ./configure --with-pydebug.  So
> a debug scenario is something like:
>
> % tar zxf Python-2.2.3.tar.gz
> % cd Python-2.2.3
> % ./configure --with-pydebug --prefix=$HOME
> % make
> % make install
>
> % cd ..
> % tar zxf numarray-1.2.3.tar.gz
> % cd numarray-1.2.3
> % python setup.py install
>
> % cd ..
> % tar zxf your_stuff.tar.gz
> % cd your_stuff
> % python setup.py install
>
> This makes a debug Python installed in $HOME/bin, $HOME/lib, and
> $HOME/include.   This process is useful for compiling Python itself and
> extensions with "-g -O0" and hence gdb works better.  Besides
> appropriate compiler switches, debug Python also has more robust object
> memory management and better tracked reference counting.
>
> Debug like this:
>
> % setenv PATH $HOME/bin:$PATH  # export if you use bash
> % rehash
>
> % gdb python
> (gdb) run
>
> >>> <do the test>
>
> <crash>
> (gdb) l <startline>,<endline>  # to see some code
> (gdb) p <some_interesting_variable>
> (gdb) up # Move up the stack frame to see where the bogus value came
> from
>
> Regards,
> Todd
>
> On Thu, 2005-03-03 at 14:40, Sebastian Haase wrote:
> > Hi,
> > After upgrading from numarray 1.1  (now 1.2.3)
> > We get a Segmentation fault in our C++ program on Linux
> > (python2.2,gcc2.95) , gdb says this:
> >
> > Program received signal SIGSEGV, Segmentation fault.
> > [Switching to Thread 1087498336 (LWP 8279)]
> > 0x406d68d5 in PyObject_GetAttrString () from /usr/lib/libpython2.2.so.0.0
> > (gdb) where
> > #0  0x406d68d5 in PyObject_GetAttrString () from
> > /usr/lib/libpython2.2.so.0.0 #1  0x410f905e in deferred_libnumarray_init
> > () at Src/libnumarraymodule.c:149 #2  0x410f98a8 in NA_NewAllFromBuffer
> > (ndim=3, shape=0xbffff2e4, type=tFloat32, bufferObject=0x8a03988,
> > byteoffset=0,
> > <nl>    bytestride=0, byteorder=0, aligned=1, writeable=1) at Src/
> > libnumarraymodule.c:636
> > #3  0x0805b159 in MyApp::OnInit (this=0x8108f50) at omx_app.cpp:519
> > #4  0x4026f616 in wxEntry () from /jws30/haase/PrLin0/wxGtkLibs/
> > libwx_gtk-2.4.so
> > #5  0x0805a91a in main (argc=1, argv=0xbffff414) at omx_app.cpp:247
> >
> >
> > To initialize libnumarray I was using this:
> >    {
> > //      import_libnumarray();
> >       {
> >         PyObject *module = PyImport_ImportModule("numarray.libnumarray");
> >         if (!module)
> >               Py_FatalError("Can't import module
> > 'numarray.libnumarray'"); if (module != NULL) {
> >           PyObject *module_dict = PyModule_GetDict(module);
> >           PyObject *c_api_object =
> >                  PyDict_GetItemString(module_dict, "_C_API");
> >           if (PyCObject_Check(c_api_object)) {
> >             libnumarray_API = (void **)PyCObject_AsVoidPtr(c_api_object);
> >           } else {
> >             Py_FatalError("Can't get API for module
> > 'numarray.libnumarray'"); }
> >         }
> >       }
> >   }
> >
> > Any idea ?
> >
> > Thanks,
> > Sebastian Haase
> >
> >
> >
> > -------------------------------------------------------
> > SF email is sponsored by - The IT Product Guide
> > Read honest & candid reviews on hundreds of IT Products from real users.
> > Discover which products truly live up to the hype. Start reading now.
> > http://ads.osdn.com/?ad_id=6595&alloc_id=14396&op=click
> > _______________________________________________
> > Numpy-discussion mailing list
> > Numpy-discussion at lists.sourceforge.net
> > https://lists.sourceforge.net/lists/listinfo/numpy-discussion




More information about the Numpy-discussion mailing list