[Numpy-discussion] Problem with numpy.linalg.inv in numpy 1.01b on Mac OS X 10.4 Tiger (8.7.0)

Sasha ndarray at mac.com
Thu Aug 10 13:41:35 CDT 2006


Inverting a matrix with masked values does not make much sense. Call
"filled" method with an appropriate fill value before passing the
matrix to "inv".

On 8/10/06, Daran L. Rife <drife at ucar.edu> wrote:
> Hello,
>
> I am a veteran user of Numeric and am trying
> out the latest version of numpy (numpy 1.01b)
> on Mac OS X 10.4 Tiger (8.7.0).
>
> When trying to invert a matrix with
> numpy.linalg.inv I get the following error:
>
> ---->
>
> Traceback (most recent call last):
>  File "./bias_correction.py", line 381, in ?
>    if __name__ == "__main__": main()
>  File "./bias_correction.py", line 373, in main
>    (index_to_stnid, bias_and_innov) = calc_bias_and_innov(cf, stn_info,
> obs, infile_obs, grids, infile_grids)
>  File "./bias_correction.py", line 297, in calc_bias_and_innov
>    K = make_kalman_gain(R, P_local, H)
>  File "./bias_correction.py", line 157, in make_kalman_gain
>    K = MA.dot( MA.dot(P, MA.transpose(H)), inv(MA.dot(H, MA.dot(P,
> MA.transpose(H))) + R ) )
>  File "/opt/python/lib/python2.4/site-packages/numpy/linalg/linalg.py",
> line 149, in inv
>    return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
> TypeError: __array_wrap__() takes exactly 3 arguments (2 given)
>
> <----
>
> Is this a known problem, and if so, what is the fix?
>
>
> Thanks very much,
>
>
> Daran
>
>
>
>
>
> -------------------------------------------------------------------------
> Using Tomcat but need to do more? Need to support web services, security?
> Get stuff done quickly with pre-integrated technology to make your job easier
> Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
> http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642
> _______________________________________________
> Numpy-discussion mailing list
> Numpy-discussion at lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/numpy-discussion
>




More information about the Numpy-discussion mailing list