[Numpy-discussion] insert 1D to a 2D array and change it to 3D

lorenzo bolla lbolla@gmail....
Fri Apr 25 05:52:30 CDT 2008


why not using something like numpy.repeat?

In [18]: B = numpy.random.rand(4,3)
In [19]: A = numpy.repeat(B[:,:,numpy.newaxis],2,axis=2)
In [20]: B.shape
Out[20]: (4, 3)
In [21]: A.shape
Out[21]: (4, 3, 2)
In [22]: numpy.all(A[:,:,0] == A[:,:,1])
Out[22]: True

hth,
L.


On Fri, Apr 25, 2008 at 12:09 PM, Matthieu Brucher <
matthieu.brucher@gmail.com> wrote:

>
>
> 2008/4/25, tournesol <tournesol33@gmail.com>:
>>
>> Hi All.
>>
>>
>> I just want to conver Fortran 77 source to
>> Python.
>>
>> Here is my F77 source.
>>
>>         DIMENSION A(25,60,13),B(25,60,13)
>>
>>         open(15,file='data.dat')
>>         DO 60 K=1,2
>>         READ(15,1602) ((B(I,J),J=1,60),I=1,25)
>>     60 CONTINUE
>>   1602 FORMAT(15I4)
>>
>>         DO 63 K=1,10
>>         DO 62 I=1,25
>>         DO 62 J=1,60
>>         A(I,J,K)=B(I,J)
>>     62 CONTINUE
>>     63 CONTINUE
>>         END
>>
>> Q1: Fortran-contiguous is ARRAY(row,colum,depth).
>>      How about the Python-contiguous ? array(depth,row,colum) ?
>
>
>
> Default is C-contiguous, but you can you Fortran contiguous arrays.
>
>
> Q2: How can I insert 1D to a 2D array and make it to
>>      3D array. ex:) B:25x60 ==> A: 10X25X60
>>
>
> I don't understand what you want to do, but broadcasting allows copying
> several instances of an array into another one.
>
> Matthieu
> --
> French PhD student
> Website : http://matthieu-brucher.developpez.com/
> Blogs : http://matt.eifelle.com and http://blog.developpez.com/?blog=92
> LinkedIn : http://www.linkedin.com/in/matthieubrucher
> _______________________________________________
> Numpy-discussion mailing list
> Numpy-discussion@scipy.org
> http://projects.scipy.org/mailman/listinfo/numpy-discussion
>
>


-- 
Lorenzo Bolla
lbolla@gmail.com
http://lorenzobolla.emurse.com/
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://projects.scipy.org/pipermail/numpy-discussion/attachments/20080425/2b495b36/attachment.html 


More information about the Numpy-discussion mailing list