# [Numpy-discussion] Faster

Keith Goodman kwgoodman@gmail....
Fri May 2 22:20:04 CDT 2008

```On Fri, May 2, 2008 at 7:25 PM, Robert Kern <robert.kern@gmail.com> wrote:
> On Fri, May 2, 2008 at 9:02 PM, Keith Goodman <kwgoodman@gmail.com> wrote:
>  >  You're right. Finding the distance is slow. Is there any way to speed
>  >  up the function below? It returns the row and column indices of the
>  >  min value of the NxN array x.
>  >
>  >  def dist(x):
>  >     x = x + 1e10 * np.eye(x.shape[0])
>  >     i, j = np.where(x == x.min())
>  >
>  >     return i[0], j[0]
>
>  Assuming x is contiguous and you can modify x in-place:
>
>
>  In [1]: from numpy import *
>
>  In [2]: def dist(x):
>    ...:    x = x + 1e10 * eye(x.shape[0])
>    ...:    i, j = where(x == x.min())
>
>    ...:    return i[0], j[0]
>    ...:
>
>  In [3]: def symmdist(N):
>    ...:     x = random.rand(N, N)
>    ...:     x = x + x.T
>    ...:     x.flat[::N+1] = 0
>    ...:     return x
>    ...:
>
>  In [4]: symmdist(5)
>  Out[4]:
>  array([[ 0.        ,  0.87508654,  1.11691704,  0.80366071,  0.57966808],
>        [ 0.87508654,  0.        ,  1.5521685 ,  1.74010886,  0.52156877],
>        [ 1.11691704,  1.5521685 ,  0.        ,  1.22725396,  1.04101992],
>        [ 0.80366071,  1.74010886,  1.22725396,  0.        ,  1.94577965],
>        [ 0.57966808,  0.52156877,  1.04101992,  1.94577965,  0.        ]])
>
>  In [5]: def kerndist(x):
>    ...:     N = x.shape[0]
>    ...:     x.flat[::N+1] = x.max()
>    ...:     ij = argmin(x.flat)
>    ...:     i, j = divmod(ij, N)
>    ...:     return i, j
>    ...:
>
>  In [10]: x = symmdist(500)
>
>  In [15]: %timeit dist(x)
>  10 loops, best of 3: 19.9 ms per loop
>
>  In [16]: %timeit kerndist(x)
>  100 loops, best of 3: 4.38 ms per loop

This change and your previous one cut the run time from 5.28 to 2.23
seconds. Thank you.
```