[Numpy-discussion] List of function-like things with an 'out' parameter

Alan McIntyre alan.mcintyre@gmail....
Wed May 28 16:49:21 CDT 2008


On Wed, May 28, 2008 at 3:34 PM, Charles R Harris >> I wonder if this
is something that ought to be looked at for all
>> functions with an "out" parameter?  ndarray.compress also had problems
>> with array type mismatch (#789); I can't imagine that it's safe to
>> assume only these two functions were doing it incorrectly. (Unless of
>> course somebody has recently looked at all of them)
>
> I think that is an excellent idea! A good start would be to list all the
> functions with the out parameter and then write some tests. The current
> behavior is inconsistent and we not only need to specify the behavior, but
> fix all the places that don't follow the rules.

Here's a list of things in numpy that have an 'out' argument (and
their arguments); I think I eliminated all the duplicated items (that
are imported from a subpackage into one of the main packages, for
example).  There's stuff that's missing, probably; I think the
C-implemented functions don't have argument lists programmatically
available so I may parse their docstrings or something, but this is a
start.

numpy.all ['a', 'axis', 'out']
numpy.alltrue ['a', 'axis', 'out']
numpy.amax ['a', 'axis', 'out']
numpy.amin ['a', 'axis', 'out']
numpy.any ['a', 'axis', 'out']
numpy.around ['a', 'decimals', 'out']
numpy.choose ['a', 'choices', 'out', 'mode']
numpy.clip ['a', 'a_min', 'a_max', 'out']
numpy.compress ['condition', 'a', 'axis', 'out']
numpy.core.cumprod ['a', 'axis', 'dtype', 'out']
numpy.core.cumproduct ['a', 'axis', 'dtype', 'out']
numpy.core.cumsum ['a', 'axis', 'dtype', 'out']
numpy.core.defmatrix.matrix.all ['self', 'axis', 'out']
numpy.core.defmatrix.matrix.any ['self', 'axis', 'out']
numpy.core.fromnumeric.mean ['a', 'axis', 'dtype', 'out']
numpy.core.fromnumeric.prod ['a', 'axis', 'dtype', 'out']
numpy.core.fromnumeric.product ['a', 'axis', 'dtype', 'out']
numpy.core.fromnumeric.ptp ['a', 'axis', 'out']
numpy.core.fromnumeric.round_ ['a', 'decimals', 'out']
numpy.core.fromnumeric.sometrue ['a', 'axis', 'out']
numpy.core.fromnumeric.std ['a', 'axis', 'dtype', 'out', 'ddof']
numpy.core.fromnumeric.sum ['a', 'axis', 'dtype', 'out']
numpy.core.fromnumeric.take ['a', 'indices', 'axis', 'out', 'mode']
numpy.core.fromnumeric.trace ['a', 'offset', 'axis1', 'axis2', 'dtype', 'out']
numpy.core.fromnumeric.var ['a', 'axis', 'dtype', 'out', 'ddof']
numpy.lib.function_base.median ['a', 'axis', 'out', 'overwrite_input']
numpy.ma.choose ['indices', 't', 'out', 'mode']
numpy.ma.core.MaskedArray.compress ['self', 'condition', 'axis', 'out']
numpy.ma.core.max ['obj', 'axis', 'out']
numpy.ma.core.min ['array', 'axis', 'out']
numpy.ma.core.round_ ['a', 'decimals', 'out']
numpy.ma.extras.median ['a', 'axis', 'out', 'overwrite_input']


More information about the Numpy-discussion mailing list