[Numpy-discussion] example reading binary Fortran file
David Froger
david.froger.info@gmail....
Sat May 30 17:49:00 CDT 2009
>
> You're half wrong. FortranFile can read arrays written as above, but it
> sees them as a single real array. So, with the attached Fortran program::
>
> In [1]: from fortranfile import FortranFile
>
> In [2]: f = FortranFile('uxuyp.bin', endian='<') # Original bug was
> incorrect byte order
>
> In [3]: u = f.readReals()
>
> In [4]: u.shape
> Out[4]: (20,)
>
> In [5]: u
> Out[5]:
> array([ 101., 111., 102., 112., 103., 113., 104., 114., 105.,
> 115., 201., 211., 202., 212., 203., 213., 204., 214.,
> 205., 215.], dtype=float32)
>
> In [6]: ux = u[:10].reshape(2,5); uy = u[10:].reshape(2,5)
>
> In [7]: p = f.readReals().reshape(2,5)
>
> In [8]: ux, uy, p
> Out[8]:
> (array([[ 101., 111., 102., 112., 103.],
> [ 113., 104., 114., 105., 115.]], dtype=float32),
> array([[ 201., 211., 202., 212., 203.],
> [ 213., 204., 214., 205., 215.]], dtype=float32),
> array([[ 301., 311., 302., 312., 303.],
> [ 313., 304., 314., 305., 315.]], dtype=float32))
ok! That's exactlly what I was looking for, thank you.
Awesome! The thoughts banging around in my head right now are that some
> sort of mini-language that encapsulates the content of the declarations and
> the write statements should allow one to tease out exactly which struct call
> will unpack the right information. f2py has some fortran parsing
> capabilities, so you might be able to use the fortran itself as the
> mini-language. Something like
>
> spec = fortranfile.OutputSpecification(\
> """real(4),dimension(2,5):: ux,uy
> write(11) ux,uy""")
> ux, uy = fortranfile.FortranFile('uxuyp.bin').readSpec(spec)
>
whouhou, I'm really enthusiastic, I love this solution!!! I begin to code
it... I'll give news around 1 june, (somethings to finish before).
One more time, thanks for this help!
best,
David
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://mail.scipy.org/pipermail/numpy-discussion/attachments/20090531/3ec4b5d0/attachment.html
More information about the Numpy-discussion
mailing list