[Numpy-discussion] What Requires C and what is just python

josef.pktd@gmai... josef.pktd@gmai...
Sun Mar 20 10:44:08 CDT 2011


On Sun, Mar 20, 2011 at 11:08 AM, Ben Smith <ben@wbpsystems.com> wrote:
>
> So, in addition to my computer science work, I'm a PhD student in econ. Right now, the class is using GAUSS for almost everything. This sort of pisses me off because it means people are building libraries of code that become valueless when they graduate (because right now we get GAUSS licenses for free, but it is absurdly expensive later) -- particularly when this is the only language they know.
>
> So, I had this idea of building some command line tools to do the same things using the most basic pieces of NumPy (arrays, dot products, transpose and inverse -- that's it). And it is going great. My problem however is that I'd like to be able to share these tools but I know I'm opening up a big can of worms where I have to go around building numpy on 75 peoples computers. What I'd like to do is limit myself to just the functions that are implemented in python, package it with py2exe and hand that to anyone that needs it. So, my question, if anyone knows, what's implemented in python and what depends on the c libraries? Is this even possible?

I think you can package also numpy with py2exe.

Overall I think restricting to pure python is a very bad idea if you
want to compete with Gauss.
Even for a minimal translation of Gauss programs I need at least numpy
and scipy, and statsmodels for the econometrics specific parts. linear
algebra, optimization and special functions for distributions look
like a minimum to me, and some scipy.signal for time series analysis,
and more random numbers than in python`s standard library.

Pure python will be slow for this and I doubt you will get anyone to
switch from Gauss to pure python.
Also, I haven`t seen yet a pure python matrix inverse, or linalg solver.

If they want to write their own python programs for analysis and use
python later on, then they are much better of getting a full python
distribution, EPD, pythonxy or similar. Binary distributions are
available and just one click or one command installs.
And, for example, using Spyder would be a lot nicer and easier for
writing scripts, that are equivalent to Gauss scripts, than using
commandline tools.

I fully agree with the objective of getting python/numpy/scipy tools
to get economists, econometricians to switch from gauss or matlab, but
to make it competitive we need enough supporting functions and we need
the speed that some Monte Carlo simulations don`t take days instead of
hours.

I hope you are successful with getting economists or econ students to
use python.

Josef

> Thanks!
>
> Ben
>
> --
> Ben Smith
> Founder / CSA
> WBP SYSTEMS
> http://www.wbpsystems.com
>
>
> _______________________________________________
> NumPy-Discussion mailing list
> NumPy-Discussion@scipy.org
> http://mail.scipy.org/mailman/listinfo/numpy-discussion
>


More information about the NumPy-Discussion mailing list