[Numpysvn] r3303  in trunk/numpy: . lib
numpysvn at scipy.org
numpysvn at scipy.org
Tue Oct 10 18:16:17 CDT 2006
Author: stefan
Date: 20061010 18:15:58 0500 (Tue, 10 Oct 2006)
New Revision: 3303
Modified:
trunk/numpy/add_newdocs.py
trunk/numpy/lib/function_base.py
Log:
Simplify mean and average docstrings.
Modified: trunk/numpy/add_newdocs.py
===================================================================
 trunk/numpy/add_newdocs.py 20061010 20:27:23 UTC (rev 3302)
+++ trunk/numpy/add_newdocs.py 20061010 23:15:58 UTC (rev 3303)
@@ 826,11 +826,10 @@
"""a.mean(axis=None, dtype=None)
Average the array over the given axis. If the axis is None,
 average over all dimensions of the array. If an integer axis
 is given, this equals:
 a.sum(axis, dtype) * 1.0 / len(a).
 If axis is None, this equals:
 a.sum(axis, dtype) * 1.0 / product(a.shape,axis=0)
+ average over all dimensions of the array. Equivalent to
+
+ a.sum(axis, dtype) * 1.0 / size(a, axis).
+
The optional dtype argument is the data type for intermediate
calculations in the sum.;
Modified: trunk/numpy/lib/function_base.py
===================================================================
 trunk/numpy/lib/function_base.py 20061010 20:27:23 UTC (rev 3302)
+++ trunk/numpy/lib/function_base.py 20061010 23:15:58 UTC (rev 3303)
@@ 230,15 +230,12 @@
def average(a, axis=None, weights=None, returned=False):
"""average(a, axis=None weights=None, returned=False)
 Average the array over the given axis. If the axis is None, average
 over all dimensions of the array. Equivalent to a.mean(axis)
+ Average the array over the given axis. If the axis is None,
+ average over all dimensions of the array. Equivalent to
+ a.mean(axis) and to
 If an integer axis is given, this equals:
 a.sum(axis) * 1.0 / len(a)
+ a.sum(axis) * 1.0 / size(a, axis)
 If axis is None, this equals:
 a.sum(axis) * 1.0 / product(a.shape,axis=0)

If weights are given, result is:
sum(a * weights,axis) / sum(weights,axis),
where the weights must have a's shape or be 1D with length the
More information about the Numpysvn
mailing list