[Numpy-svn] r8299 - in trunk/numpy/lib: . tests

numpy-svn@scip... numpy-svn@scip...
Sun Mar 21 20:45:40 CDT 2010


Author: pierregm
Date: 2010-03-21 20:45:40 -0500 (Sun, 21 Mar 2010)
New Revision: 8299

Modified:
   trunk/numpy/lib/function_base.py
   trunk/numpy/lib/tests/test_function_base.py
Log:
* Use putmask instead of fancy indexing in _nanop (bug #1421)

Modified: trunk/numpy/lib/function_base.py
===================================================================
--- trunk/numpy/lib/function_base.py	2010-03-21 22:30:39 UTC (rev 8298)
+++ trunk/numpy/lib/function_base.py	2010-03-22 01:45:40 UTC (rev 8299)
@@ -1282,7 +1282,10 @@
 
     # We only need to take care of NaN's in floating point arrays
     if not np.issubdtype(y.dtype, int):
-       y[mask] = fill
+        # y[mask] = fill
+        # We can't use fancy indexing here as it'll mess w/ MaskedArrays
+        # Instead, let's fill the array directly...
+        np.putmask(y, mask, fill)
 
     res = op(y, axis=axis)
     mask_all_along_axis = mask.all(axis=axis)

Modified: trunk/numpy/lib/tests/test_function_base.py
===================================================================
--- trunk/numpy/lib/tests/test_function_base.py	2010-03-21 22:30:39 UTC (rev 8298)
+++ trunk/numpy/lib/tests/test_function_base.py	2010-03-22 01:45:40 UTC (rev 8299)
@@ -10,70 +10,70 @@
 
 class TestAny(TestCase):
     def test_basic(self):
-        y1 = [0,0,1,0]
-        y2 = [0,0,0,0]
-        y3 = [1,0,1,0]
+        y1 = [0, 0, 1, 0]
+        y2 = [0, 0, 0, 0]
+        y3 = [1, 0, 1, 0]
         assert(any(y1))
         assert(any(y3))
         assert(not any(y2))
 
     def test_nd(self):
-        y1 = [[0,0,0],[0,1,0],[1,1,0]]
+        y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]]
         assert(any(y1))
-        assert_array_equal(sometrue(y1,axis=0),[1,1,0])
-        assert_array_equal(sometrue(y1,axis=1),[0,1,1])
+        assert_array_equal(sometrue(y1, axis=0), [1, 1, 0])
+        assert_array_equal(sometrue(y1, axis=1), [0, 1, 1])
 
 class TestAll(TestCase):
     def test_basic(self):
-        y1 = [0,1,1,0]
-        y2 = [0,0,0,0]
-        y3 = [1,1,1,1]
+        y1 = [0, 1, 1, 0]
+        y2 = [0, 0, 0, 0]
+        y3 = [1, 1, 1, 1]
         assert(not all(y1))
         assert(all(y3))
         assert(not all(y2))
         assert(all(~array(y2)))
 
     def test_nd(self):
-        y1 = [[0,0,1],[0,1,1],[1,1,1]]
+        y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
         assert(not all(y1))
-        assert_array_equal(alltrue(y1,axis=0),[0,0,1])
-        assert_array_equal(alltrue(y1,axis=1),[0,0,1])
+        assert_array_equal(alltrue(y1, axis=0), [0, 0, 1])
+        assert_array_equal(alltrue(y1, axis=1), [0, 0, 1])
 
 class TestAverage(TestCase):
     def test_basic(self):
-        y1 = array([1,2,3])
-        assert(average(y1,axis=0) == 2.)
-        y2 = array([1.,2.,3.])
-        assert(average(y2,axis=0) == 2.)
-        y3 = [0.,0.,0.]
-        assert(average(y3,axis=0) == 0.)
+        y1 = array([1, 2, 3])
+        assert(average(y1, axis=0) == 2.)
+        y2 = array([1., 2., 3.])
+        assert(average(y2, axis=0) == 2.)
+        y3 = [0., 0., 0.]
+        assert(average(y3, axis=0) == 0.)
 
-        y4 = ones((4,4))
-        y4[0,1] = 0
-        y4[1,0] = 2
+        y4 = ones((4, 4))
+        y4[0, 1] = 0
+        y4[1, 0] = 2
         assert_almost_equal(y4.mean(0), average(y4, 0))
         assert_almost_equal(y4.mean(1), average(y4, 1))
 
-        y5 = rand(5,5)
+        y5 = rand(5, 5)
         assert_almost_equal(y5.mean(0), average(y5, 0))
         assert_almost_equal(y5.mean(1), average(y5, 1))
 
-        y6 = matrix(rand(5,5))
-        assert_array_equal(y6.mean(0), average(y6,0))
+        y6 = matrix(rand(5, 5))
+        assert_array_equal(y6.mean(0), average(y6, 0))
 
     def test_weights(self):
         y = arange(10)
         w = arange(10)
-        assert_almost_equal(average(y, weights=w), (arange(10)**2).sum()*1./arange(10).sum())
+        assert_almost_equal(average(y, weights=w), (arange(10) ** 2).sum()*1. / arange(10).sum())
 
-        y1 = array([[1,2,3],[4,5,6]])
-        w0 = [1,2]
-        actual = average(y1,weights=w0,axis=0)
-        desired = array([3.,4.,5.])
+        y1 = array([[1, 2, 3], [4, 5, 6]])
+        w0 = [1, 2]
+        actual = average(y1, weights=w0, axis=0)
+        desired = array([3., 4., 5.])
         assert_almost_equal(actual, desired)
 
 
-        w1 = [0,0,1]
+        w1 = [0, 0, 1]
         desired = array([3., 6.])
         assert_almost_equal(average(y1, weights=w1, axis=1), desired)
 
@@ -82,7 +82,7 @@
 
 
         # 2D Case
-        w2 = [[0,0,1],[0,0,2]]
+        w2 = [[0, 0, 1], [0, 0, 2]]
         desired = array([3., 6.])
         assert_array_equal(average(y1, weights=w2, axis=1), desired)
 
@@ -90,345 +90,345 @@
 
 
     def test_returned(self):
-        y = array([[1,2,3],[4,5,6]])
+        y = array([[1, 2, 3], [4, 5, 6]])
 
         # No weights
         avg, scl = average(y, returned=True)
         assert_equal(scl, 6.)
 
         avg, scl = average(y, 0, returned=True)
-        assert_array_equal(scl, array([2.,2.,2.]))
+        assert_array_equal(scl, array([2., 2., 2.]))
 
         avg, scl = average(y, 1, returned=True)
-        assert_array_equal(scl, array([3.,3.]))
+        assert_array_equal(scl, array([3., 3.]))
 
         # With weights
-        w0 = [1,2]
+        w0 = [1, 2]
         avg, scl = average(y, weights=w0, axis=0, returned=True)
         assert_array_equal(scl, array([3., 3., 3.]))
 
-        w1 = [1,2,3]
+        w1 = [1, 2, 3]
         avg, scl = average(y, weights=w1, axis=1, returned=True)
         assert_array_equal(scl, array([6., 6.]))
 
-        w2 = [[0,0,1],[1,2,3]]
+        w2 = [[0, 0, 1], [1, 2, 3]]
         avg, scl = average(y, weights=w2, axis=1, returned=True)
-        assert_array_equal(scl, array([1.,6.]))
+        assert_array_equal(scl, array([1., 6.]))
 
 
 class TestSelect(TestCase):
-    def _select(self,cond,values,default=0):
+    def _select(self, cond, values, default=0):
         output = []
         for m in range(len(cond)):
-            output += [V[m] for V,C in zip(values,cond) if C[m]] or [default]
+            output += [V[m] for V, C in zip(values, cond) if C[m]] or [default]
         return output
 
     def test_basic(self):
-        choices = [array([1,2,3]),
-                   array([4,5,6]),
-                   array([7,8,9])]
-        conditions = [array([0,0,0]),
-                      array([0,1,0]),
-                      array([0,0,1])]
-        assert_array_equal(select(conditions,choices,default=15),
-                           self._select(conditions,choices,default=15))
+        choices = [array([1, 2, 3]),
+                   array([4, 5, 6]),
+                   array([7, 8, 9])]
+        conditions = [array([0, 0, 0]),
+                      array([0, 1, 0]),
+                      array([0, 0, 1])]
+        assert_array_equal(select(conditions, choices, default=15),
+                           self._select(conditions, choices, default=15))
 
-        assert_equal(len(choices),3)
-        assert_equal(len(conditions),3)
+        assert_equal(len(choices), 3)
+        assert_equal(len(conditions), 3)
 
 class TestInsert(TestCase):
     def test_basic(self):
-        a = [1,2,3]
-        assert_equal(insert(a,0,1), [1,1,2,3])
-        assert_equal(insert(a,3,1), [1,2,3,1])
-        assert_equal(insert(a,[1,1,1],[1,2,3]), [1,1,2,3,2,3])
+        a = [1, 2, 3]
+        assert_equal(insert(a, 0, 1), [1, 1, 2, 3])
+        assert_equal(insert(a, 3, 1), [1, 2, 3, 1])
+        assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3])
 
 class TestAmax(TestCase):
     def test_basic(self):
-        a = [3,4,5,10,-3,-5,6.0]
-        assert_equal(amax(a),10.0)
-        b = [[3,6.0, 9.0],
-             [4,10.0,5.0],
-             [8,3.0,2.0]]
-        assert_equal(amax(b,axis=0),[8.0,10.0,9.0])
-        assert_equal(amax(b,axis=1),[9.0,10.0,8.0])
+        a = [3, 4, 5, 10, -3, -5, 6.0]
+        assert_equal(amax(a), 10.0)
+        b = [[3, 6.0, 9.0],
+             [4, 10.0, 5.0],
+             [8, 3.0, 2.0]]
+        assert_equal(amax(b, axis=0), [8.0, 10.0, 9.0])
+        assert_equal(amax(b, axis=1), [9.0, 10.0, 8.0])
 
 class TestAmin(TestCase):
     def test_basic(self):
-        a = [3,4,5,10,-3,-5,6.0]
-        assert_equal(amin(a),-5.0)
-        b = [[3,6.0, 9.0],
-             [4,10.0,5.0],
-             [8,3.0,2.0]]
-        assert_equal(amin(b,axis=0),[3.0,3.0,2.0])
-        assert_equal(amin(b,axis=1),[3.0,4.0,2.0])
+        a = [3, 4, 5, 10, -3, -5, 6.0]
+        assert_equal(amin(a), -5.0)
+        b = [[3, 6.0, 9.0],
+             [4, 10.0, 5.0],
+             [8, 3.0, 2.0]]
+        assert_equal(amin(b, axis=0), [3.0, 3.0, 2.0])
+        assert_equal(amin(b, axis=1), [3.0, 4.0, 2.0])
 
 class TestPtp(TestCase):
     def test_basic(self):
-        a = [3,4,5,10,-3,-5,6.0]
-        assert_equal(ptp(a,axis=0),15.0)
-        b = [[3,6.0, 9.0],
-             [4,10.0,5.0],
-             [8,3.0,2.0]]
-        assert_equal(ptp(b,axis=0),[5.0,7.0,7.0])
-        assert_equal(ptp(b,axis=-1),[6.0,6.0,6.0])
+        a = [3, 4, 5, 10, -3, -5, 6.0]
+        assert_equal(ptp(a, axis=0), 15.0)
+        b = [[3, 6.0, 9.0],
+             [4, 10.0, 5.0],
+             [8, 3.0, 2.0]]
+        assert_equal(ptp(b, axis=0), [5.0, 7.0, 7.0])
+        assert_equal(ptp(b, axis= -1), [6.0, 6.0, 6.0])
 
 class TestCumsum(TestCase):
     def test_basic(self):
-        ba = [1,2,10,11,6,5,4]
-        ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
-        for ctype in [int8,uint8,int16,uint16,int32,uint32,
-                      float32,float64,complex64,complex128]:
-            a = array(ba,ctype)
-            a2 = array(ba2,ctype)
-            assert_array_equal(cumsum(a,axis=0), array([1,3,13,24,30,35,39],ctype))
-            assert_array_equal(cumsum(a2,axis=0), array([[1,2,3,4],[6,8,10,13],
-                                                         [16,11,14,18]],ctype))
-            assert_array_equal(cumsum(a2,axis=1),
-                               array([[1,3,6,10],
-                                      [5,11,18,27],
-                                      [10,13,17,22]],ctype))
+        ba = [1, 2, 10, 11, 6, 5, 4]
+        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
+        for ctype in [int8, uint8, int16, uint16, int32, uint32,
+                      float32, float64, complex64, complex128]:
+            a = array(ba, ctype)
+            a2 = array(ba2, ctype)
+            assert_array_equal(cumsum(a, axis=0), array([1, 3, 13, 24, 30, 35, 39], ctype))
+            assert_array_equal(cumsum(a2, axis=0), array([[1, 2, 3, 4], [6, 8, 10, 13],
+                                                         [16, 11, 14, 18]], ctype))
+            assert_array_equal(cumsum(a2, axis=1),
+                               array([[1, 3, 6, 10],
+                                      [5, 11, 18, 27],
+                                      [10, 13, 17, 22]], ctype))
 
 class TestProd(TestCase):
     def test_basic(self):
-        ba = [1,2,10,11,6,5,4]
-        ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
-        for ctype in [int16,uint16,int32,uint32,
-                      float32,float64,complex64,complex128]:
-            a = array(ba,ctype)
-            a2 = array(ba2,ctype)
+        ba = [1, 2, 10, 11, 6, 5, 4]
+        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
+        for ctype in [int16, uint16, int32, uint32,
+                      float32, float64, complex64, complex128]:
+            a = array(ba, ctype)
+            a2 = array(ba2, ctype)
             if ctype in ['1', 'b']:
                 self.assertRaises(ArithmeticError, prod, a)
                 self.assertRaises(ArithmeticError, prod, a2, 1)
                 self.assertRaises(ArithmeticError, prod, a)
             else:
-                assert_equal(prod(a,axis=0),26400)
-                assert_array_equal(prod(a2,axis=0),
-                                   array([50,36,84,180],ctype))
-                assert_array_equal(prod(a2,axis=-1),array([24, 1890, 600],ctype))
+                assert_equal(prod(a, axis=0), 26400)
+                assert_array_equal(prod(a2, axis=0),
+                                   array([50, 36, 84, 180], ctype))
+                assert_array_equal(prod(a2, axis= -1), array([24, 1890, 600], ctype))
 
 class TestCumprod(TestCase):
     def test_basic(self):
-        ba = [1,2,10,11,6,5,4]
-        ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
-        for ctype in [int16,uint16,int32,uint32,
-                      float32,float64,complex64,complex128]:
-            a = array(ba,ctype)
-            a2 = array(ba2,ctype)
+        ba = [1, 2, 10, 11, 6, 5, 4]
+        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
+        for ctype in [int16, uint16, int32, uint32,
+                      float32, float64, complex64, complex128]:
+            a = array(ba, ctype)
+            a2 = array(ba2, ctype)
             if ctype in ['1', 'b']:
                 self.assertRaises(ArithmeticError, cumprod, a)
                 self.assertRaises(ArithmeticError, cumprod, a2, 1)
                 self.assertRaises(ArithmeticError, cumprod, a)
             else:
-                assert_array_equal(cumprod(a,axis=-1),
+                assert_array_equal(cumprod(a, axis= -1),
                                    array([1, 2, 20, 220,
-                                          1320, 6600, 26400],ctype))
-                assert_array_equal(cumprod(a2,axis=0),
-                                   array([[ 1,  2,  3,   4],
-                                          [ 5, 12, 21,  36],
-                                          [50, 36, 84, 180]],ctype))
-                assert_array_equal(cumprod(a2,axis=-1),
-                                   array([[ 1,  2,   6,   24],
+                                          1320, 6600, 26400], ctype))
+                assert_array_equal(cumprod(a2, axis=0),
+                                   array([[ 1, 2, 3, 4],
+                                          [ 5, 12, 21, 36],
+                                          [50, 36, 84, 180]], ctype))
+                assert_array_equal(cumprod(a2, axis= -1),
+                                   array([[ 1, 2, 6, 24],
                                           [ 5, 30, 210, 1890],
-                                          [10, 30, 120,  600]],ctype))
+                                          [10, 30, 120, 600]], ctype))
 
 class TestDiff(TestCase):
     def test_basic(self):
-        x = [1,4,6,7,12]
-        out = array([3,2,1,5])
-        out2 = array([-1,-1,4])
-        out3 = array([0,5])
-        assert_array_equal(diff(x),out)
-        assert_array_equal(diff(x,n=2),out2)
-        assert_array_equal(diff(x,n=3),out3)
+        x = [1, 4, 6, 7, 12]
+        out = array([3, 2, 1, 5])
+        out2 = array([-1, -1, 4])
+        out3 = array([0, 5])
+        assert_array_equal(diff(x), out)
+        assert_array_equal(diff(x, n=2), out2)
+        assert_array_equal(diff(x, n=3), out3)
 
     def test_nd(self):
-        x = 20*rand(10,20,30)
-        out1 = x[:,:,1:] - x[:,:,:-1]
-        out2 = out1[:,:,1:] - out1[:,:,:-1]
-        out3 = x[1:,:,:] - x[:-1,:,:]
-        out4 = out3[1:,:,:] - out3[:-1,:,:]
-        assert_array_equal(diff(x),out1)
-        assert_array_equal(diff(x,n=2),out2)
-        assert_array_equal(diff(x,axis=0),out3)
-        assert_array_equal(diff(x,n=2,axis=0),out4)
+        x = 20 * rand(10, 20, 30)
+        out1 = x[:, :, 1:] - x[:, :, :-1]
+        out2 = out1[:, :, 1:] - out1[:, :, :-1]
+        out3 = x[1:, :, :] - x[:-1, :, :]
+        out4 = out3[1:, :, :] - out3[:-1, :, :]
+        assert_array_equal(diff(x), out1)
+        assert_array_equal(diff(x, n=2), out2)
+        assert_array_equal(diff(x, axis=0), out3)
+        assert_array_equal(diff(x, n=2, axis=0), out4)
 
 class TestGradient(TestCase):
     def test_basic(self):
-        x = array([[1,1],[3,4]])
-        dx = [array([[2.,3.],[2.,3.]]),
-              array([[0.,0.],[1.,1.]])]
+        x = array([[1, 1], [3, 4]])
+        dx = [array([[2., 3.], [2., 3.]]),
+              array([[0., 0.], [1., 1.]])]
         assert_array_equal(gradient(x), dx)
 
     def test_badargs(self):
         # for 2D array, gradient can take 0,1, or 2 extra args
-        x = array([[1,1],[3,4]])
-        assert_raises(SyntaxError, gradient, x, array([1.,1.]),
-                      array([1.,1.]), array([1.,1.]))
+        x = array([[1, 1], [3, 4]])
+        assert_raises(SyntaxError, gradient, x, array([1., 1.]),
+                      array([1., 1.]), array([1., 1.]))
 
     def test_masked(self):
         # Make sure that gradient supports subclasses like masked arrays
-        x = np.ma.array([[1,1],[3,4]])
+        x = np.ma.array([[1, 1], [3, 4]])
         assert_equal(type(gradient(x)[0]), type(x))
 
 class TestAngle(TestCase):
     def test_basic(self):
-        x = [1+3j,sqrt(2)/2.0+1j*sqrt(2)/2,1,1j,-1,-1j,1-3j,-1+3j]
+        x = [1 + 3j, sqrt(2) / 2.0 + 1j * sqrt(2) / 2, 1, 1j, -1, -1j, 1 - 3j, -1 + 3j]
         y = angle(x)
-        yo = [arctan(3.0/1.0),arctan(1.0),0,pi/2,pi,-pi/2.0,
-              -arctan(3.0/1.0),pi-arctan(3.0/1.0)]
-        z = angle(x,deg=1)
-        zo = array(yo)*180/pi
-        assert_array_almost_equal(y,yo,11)
-        assert_array_almost_equal(z,zo,11)
+        yo = [arctan(3.0 / 1.0), arctan(1.0), 0, pi / 2, pi, -pi / 2.0,
+              - arctan(3.0 / 1.0), pi - arctan(3.0 / 1.0)]
+        z = angle(x, deg=1)
+        zo = array(yo) * 180 / pi
+        assert_array_almost_equal(y, yo, 11)
+        assert_array_almost_equal(z, zo, 11)
 
 class TestTrimZeros(TestCase):
     """ only testing for integer splits.
     """
     def test_basic(self):
-        a= array([0,0,1,2,3,4,0])
+        a = array([0, 0, 1, 2, 3, 4, 0])
         res = trim_zeros(a)
-        assert_array_equal(res,array([1,2,3,4]))
+        assert_array_equal(res, array([1, 2, 3, 4]))
     def test_leading_skip(self):
-        a= array([0,0,1,0,2,3,4,0])
+        a = array([0, 0, 1, 0, 2, 3, 4, 0])
         res = trim_zeros(a)
-        assert_array_equal(res,array([1,0,2,3,4]))
+        assert_array_equal(res, array([1, 0, 2, 3, 4]))
     def test_trailing_skip(self):
-        a= array([0,0,1,0,2,3,0,4,0])
+        a = array([0, 0, 1, 0, 2, 3, 0, 4, 0])
         res = trim_zeros(a)
-        assert_array_equal(res,array([1,0,2,3,0,4]))
+        assert_array_equal(res, array([1, 0, 2, 3, 0, 4]))
 
 
 class TestExtins(TestCase):
     def test_basic(self):
-        a = array([1,3,2,1,2,3,3])
-        b = extract(a>1,a)
-        assert_array_equal(b,[3,2,2,3,3])
+        a = array([1, 3, 2, 1, 2, 3, 3])
+        b = extract(a > 1, a)
+        assert_array_equal(b, [3, 2, 2, 3, 3])
     def test_place(self):
-        a = array([1,4,3,2,5,8,7])
-        place(a,[0,1,0,1,0,1,0],[2,4,6])
-        assert_array_equal(a,[1,2,3,4,5,6,7])
+        a = array([1, 4, 3, 2, 5, 8, 7])
+        place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6])
+        assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7])
     def test_both(self):
         a = rand(10)
         mask = a > 0.5
         ac = a.copy()
         c = extract(mask, a)
-        place(a,mask,0)
-        place(a,mask,c)
-        assert_array_equal(a,ac)
+        place(a, mask, 0)
+        place(a, mask, c)
+        assert_array_equal(a, ac)
 
 class TestVectorize(TestCase):
     def test_simple(self):
-        def addsubtract(a,b):
+        def addsubtract(a, b):
             if a > b:
                 return a - b
             else:
                 return a + b
         f = vectorize(addsubtract)
-        r = f([0,3,6,9],[1,3,5,7])
-        assert_array_equal(r,[1,6,1,2])
+        r = f([0, 3, 6, 9], [1, 3, 5, 7])
+        assert_array_equal(r, [1, 6, 1, 2])
     def test_scalar(self):
-        def addsubtract(a,b):
+        def addsubtract(a, b):
             if a > b:
                 return a - b
             else:
                 return a + b
         f = vectorize(addsubtract)
-        r = f([0,3,6,9],5)
-        assert_array_equal(r,[5,8,1,4])
+        r = f([0, 3, 6, 9], 5)
+        assert_array_equal(r, [5, 8, 1, 4])
     def test_large(self):
-        x = linspace(-3,2,10000)
+        x = linspace(-3, 2, 10000)
         f = vectorize(lambda x: x)
         y = f(x)
         assert_array_equal(y, x)
 
 class TestDigitize(TestCase):
     def test_forward(self):
-        x = arange(-6,5)
-        bins = arange(-5,5)
-        assert_array_equal(digitize(x,bins),arange(11))
+        x = arange(-6, 5)
+        bins = arange(-5, 5)
+        assert_array_equal(digitize(x, bins), arange(11))
 
     def test_reverse(self):
-        x = arange(5,-6,-1)
-        bins = arange(5,-5,-1)
-        assert_array_equal(digitize(x,bins),arange(11))
+        x = arange(5, -6, -1)
+        bins = arange(5, -5, -1)
+        assert_array_equal(digitize(x, bins), arange(11))
 
     def test_random(self):
         x = rand(10)
         bin = linspace(x.min(), x.max(), 10)
-        assert all(digitize(x,bin) != 0)
+        assert all(digitize(x, bin) != 0)
 
 class TestUnwrap(TestCase):
     def test_simple(self):
                 #check that unwrap removes jumps greather that 2*pi
-        assert_array_equal(unwrap([1,1+2*pi]),[1,1])
+        assert_array_equal(unwrap([1, 1 + 2 * pi]), [1, 1])
         #check that unwrap maintans continuity
-        assert(all(diff(unwrap(rand(10)*100))<pi))
+        assert(all(diff(unwrap(rand(10) * 100)) < pi))
 
 
 class TestFilterwindows(TestCase):
     def test_hanning(self):
         #check symmetry
-        w=hanning(10)
-        assert_array_almost_equal(w,flipud(w),7)
+        w = hanning(10)
+        assert_array_almost_equal(w, flipud(w), 7)
         #check known value
-        assert_almost_equal(sum(w,axis=0),4.500,4)
+        assert_almost_equal(sum(w, axis=0), 4.500, 4)
 
     def test_hamming(self):
         #check symmetry
-        w=hamming(10)
-        assert_array_almost_equal(w,flipud(w),7)
+        w = hamming(10)
+        assert_array_almost_equal(w, flipud(w), 7)
         #check known value
-        assert_almost_equal(sum(w,axis=0),4.9400,4)
+        assert_almost_equal(sum(w, axis=0), 4.9400, 4)
 
     def test_bartlett(self):
         #check symmetry
-        w=bartlett(10)
-        assert_array_almost_equal(w,flipud(w),7)
+        w = bartlett(10)
+        assert_array_almost_equal(w, flipud(w), 7)
         #check known value
-        assert_almost_equal(sum(w,axis=0),4.4444,4)
+        assert_almost_equal(sum(w, axis=0), 4.4444, 4)
 
     def test_blackman(self):
         #check symmetry
-        w=blackman(10)
-        assert_array_almost_equal(w,flipud(w),7)
+        w = blackman(10)
+        assert_array_almost_equal(w, flipud(w), 7)
         #check known value
-        assert_almost_equal(sum(w,axis=0),3.7800,4)
+        assert_almost_equal(sum(w, axis=0), 3.7800, 4)
 
 
 class TestTrapz(TestCase):
     def test_simple(self):
-        r=trapz(exp(-1.0/2*(arange(-10,10,.1))**2)/sqrt(2*pi),dx=0.1)
+        r = trapz(exp(-1.0 / 2 * (arange(-10, 10, .1)) ** 2) / sqrt(2 * pi), dx=0.1)
         #check integral of normal equals 1
-        assert_almost_equal(sum(r,axis=0),1,7)
+        assert_almost_equal(sum(r, axis=0), 1, 7)
 
     def test_ndim(self):
         x = linspace(0, 1, 3)
         y = linspace(0, 2, 8)
         z = linspace(0, 3, 13)
 
-        wx = ones_like(x) * (x[1]-x[0])
+        wx = ones_like(x) * (x[1] - x[0])
         wx[0] /= 2
         wx[-1] /= 2
-        wy = ones_like(y) * (y[1]-y[0])
+        wy = ones_like(y) * (y[1] - y[0])
         wy[0] /= 2
         wy[-1] /= 2
-        wz = ones_like(z) * (z[1]-z[0])
+        wz = ones_like(z) * (z[1] - z[0])
         wz[0] /= 2
         wz[-1] /= 2
 
-        q = x[:,None,None] + y[None,:,None] + z[None,None,:]
+        q = x[:, None, None] + y[None, :, None] + z[None, None, :]
 
-        qx = (q*wx[:,None,None]).sum(axis=0)
-        qy = (q*wy[None,:,None]).sum(axis=1)
-        qz = (q*wz[None,None,:]).sum(axis=2)
+        qx = (q * wx[:, None, None]).sum(axis=0)
+        qy = (q * wy[None, :, None]).sum(axis=1)
+        qz = (q * wz[None, None, :]).sum(axis=2)
 
         # n-d `x`
-        r = trapz(q, x=x[:,None,None], axis=0)
+        r = trapz(q, x=x[:, None, None], axis=0)
         assert_almost_equal(r, qx)
-        r = trapz(q, x=y[None,:,None], axis=1)
+        r = trapz(q, x=y[None, :, None], axis=1)
         assert_almost_equal(r, qy)
-        r = trapz(q, x=z[None,None,:], axis=2)
+        r = trapz(q, x=z[None, None, :], axis=2)
         assert_almost_equal(r, qz)
 
         # 1-d `x`
@@ -442,10 +442,10 @@
 
 class TestSinc(TestCase):
     def test_simple(self):
-        assert(sinc(0)==1)
-        w=sinc(linspace(-1,1,100))
+        assert(sinc(0) == 1)
+        w = sinc(linspace(-1, 1, 100))
         #check symmetry
-        assert_array_almost_equal(w,flipud(w),7)
+        assert_array_almost_equal(w, flipud(w), 7)
 
 class TestHistogram(TestCase):
     def setUp(self):
@@ -455,139 +455,139 @@
         pass
 
     def test_simple(self):
-        n=100
-        v=rand(n)
-        (a,b)=histogram(v)
+        n = 100
+        v = rand(n)
+        (a, b) = histogram(v)
         #check if the sum of the bins equals the number of samples
-        assert_equal(sum(a,axis=0), n)
+        assert_equal(sum(a, axis=0), n)
         #check that the bin counts are evenly spaced when the data is from a
         # linear function
-        (a,b)=histogram(linspace(0,10,100))
+        (a, b) = histogram(linspace(0, 10, 100))
         assert_array_equal(a, 10)
 
     def test_one_bin(self):
         # Ticket 632
-        hist,edges = histogram([1,2,3,4],[1,2])
-        assert_array_equal(hist,[2, ])
-        assert_array_equal(edges,[1,2])
+        hist, edges = histogram([1, 2, 3, 4], [1, 2])
+        assert_array_equal(hist, [2, ])
+        assert_array_equal(edges, [1, 2])
 
     def test_normed(self):
         # Check that the integral of the density equals 1.
         n = 100
         v = rand(n)
-        a,b = histogram(v, normed=True)
-        area = sum(a*diff(b))
+        a, b = histogram(v, normed=True)
+        area = sum(a * diff(b))
         assert_almost_equal(area, 1)
 
         # Check with non constant bin width
-        v = rand(n)*10
-        bins = [0,1,5, 9, 10]
-        a,b = histogram(v, bins, normed=True)
-        area = sum(a*diff(b))
+        v = rand(n) * 10
+        bins = [0, 1, 5, 9, 10]
+        a, b = histogram(v, bins, normed=True)
+        area = sum(a * diff(b))
         assert_almost_equal(area, 1)
 
 
     def test_outliers(self):
         # Check that outliers are not tallied
-        a = arange(10)+.5
+        a = arange(10) + .5
 
         # Lower outliers
-        h,b = histogram(a, range=[0,9])
-        assert_equal(h.sum(),9)
+        h, b = histogram(a, range=[0, 9])
+        assert_equal(h.sum(), 9)
 
         # Upper outliers
-        h,b = histogram(a, range=[1,10])
-        assert_equal(h.sum(),9)
+        h, b = histogram(a, range=[1, 10])
+        assert_equal(h.sum(), 9)
 
         # Normalization
-        h,b = histogram(a, range=[1,9], normed=True)
-        assert_equal((h*diff(b)).sum(),1)
+        h, b = histogram(a, range=[1, 9], normed=True)
+        assert_equal((h * diff(b)).sum(), 1)
 
         # Weights
-        w = arange(10)+.5
-        h,b = histogram(a, range=[1,9], weights=w, normed=True)
-        assert_equal((h*diff(b)).sum(),1)
+        w = arange(10) + .5
+        h, b = histogram(a, range=[1, 9], weights=w, normed=True)
+        assert_equal((h * diff(b)).sum(), 1)
 
-        h,b = histogram(a, bins=8, range=[1,9], weights=w)
+        h, b = histogram(a, bins=8, range=[1, 9], weights=w)
         assert_equal(h, w[1:-1])
 
 
     def test_type(self):
         # Check the type of the returned histogram
-        a = arange(10)+.5
-        h,b = histogram(a)
+        a = arange(10) + .5
+        h, b = histogram(a)
         assert(issubdtype(h.dtype, int))
 
-        h,b = histogram(a, normed=True)
+        h, b = histogram(a, normed=True)
         assert(issubdtype(h.dtype, float))
 
-        h,b = histogram(a, weights=ones(10, int))
+        h, b = histogram(a, weights=ones(10, int))
         assert(issubdtype(h.dtype, int))
 
-        h,b = histogram(a, weights=ones(10, float))
+        h, b = histogram(a, weights=ones(10, float))
         assert(issubdtype(h.dtype, float))
 
 
     def test_weights(self):
         v = rand(100)
-        w = ones(100)*5
-        a,b = histogram(v)
-        na,nb = histogram(v, normed=True)
-        wa,wb = histogram(v, weights=w)
-        nwa,nwb = histogram(v, weights=w, normed=True)
-        assert_array_almost_equal(a*5, wa)
+        w = ones(100) * 5
+        a, b = histogram(v)
+        na, nb = histogram(v, normed=True)
+        wa, wb = histogram(v, weights=w)
+        nwa, nwb = histogram(v, weights=w, normed=True)
+        assert_array_almost_equal(a * 5, wa)
         assert_array_almost_equal(na, nwa)
 
         # Check weights are properly applied.
-        v = linspace(0,10,10)
+        v = linspace(0, 10, 10)
         w = concatenate((zeros(5), ones(5)))
-        wa,wb = histogram(v, bins=arange(11),weights=w)
+        wa, wb = histogram(v, bins=arange(11), weights=w)
         assert_array_almost_equal(wa, w)
 
         # Check with integer weights
-        wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1])
-        assert_array_equal(wa, [4,5,0,1])
-        wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], normed=True)
-        assert_array_equal(wa, array([4,5,0,1])/10./3.*4)
+        wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
+        assert_array_equal(wa, [4, 5, 0, 1])
+        wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True)
+        assert_array_equal(wa, array([4, 5, 0, 1]) / 10. / 3. * 4)
 
 class TestHistogramdd(TestCase):
     def test_simple(self):
         x = array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
         [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
-        H, edges = histogramdd(x, (2,3,3), range = [[-1,1], [0,3], [0,3]])
-        answer = asarray([[[0,1,0], [0,0,1], [1,0,0]], [[0,1,0], [0,0,1],
-            [0,0,1]]])
-        assert_array_equal(H,answer)
+        H, edges = histogramdd(x, (2, 3, 3), range=[[-1, 1], [0, 3], [0, 3]])
+        answer = asarray([[[0, 1, 0], [0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 0, 1],
+            [0, 0, 1]]])
+        assert_array_equal(H, answer)
         # Check normalization
-        ed = [[-2,0,2], [0,1,2,3], [0,1,2,3]]
-        H, edges = histogramdd(x, bins = ed, normed = True)
-        assert(all(H == answer/12.))
+        ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
+        H, edges = histogramdd(x, bins=ed, normed=True)
+        assert(all(H == answer / 12.))
         # Check that H has the correct shape.
-        H, edges = histogramdd(x, (2,3,4), range = [[-1,1], [0,3], [0,4]],
+        H, edges = histogramdd(x, (2, 3, 4), range=[[-1, 1], [0, 3], [0, 4]],
             normed=True)
-        answer = asarray([[[0,1,0,0], [0,0,1,0], [1,0,0,0]], [[0,1,0,0],
-            [0,0,1,0], [0,0,1,0]]])
-        assert_array_almost_equal(H, answer/6., 4)
+        answer = asarray([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]], [[0, 1, 0, 0],
+            [0, 0, 1, 0], [0, 0, 1, 0]]])
+        assert_array_almost_equal(H, answer / 6., 4)
         # Check that a sequence of arrays is accepted and H has the correct
         # shape.
-        z = [squeeze(y) for y in split(x,3,axis=1)]
-        H, edges = histogramdd(z, bins=(4,3,2),range=[[-2,2], [0,3], [0,2]])
-        answer = asarray([[[0,0],[0,0],[0,0]],
-                          [[0,1], [0,0], [1,0]],
-                          [[0,1], [0,0],[0,0]],
-                          [[0,0],[0,0],[0,0]]])
+        z = [squeeze(y) for y in split(x, 3, axis=1)]
+        H, edges = histogramdd(z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
+        answer = asarray([[[0, 0], [0, 0], [0, 0]],
+                          [[0, 1], [0, 0], [1, 0]],
+                          [[0, 1], [0, 0], [0, 0]],
+                          [[0, 0], [0, 0], [0, 0]]])
         assert_array_equal(H, answer)
 
-        Z = zeros((5,5,5))
+        Z = zeros((5, 5, 5))
         Z[range(5), range(5), range(5)] = 1.
-        H,edges = histogramdd([arange(5), arange(5), arange(5)], 5)
+        H, edges = histogramdd([arange(5), arange(5), arange(5)], 5)
         assert_array_equal(H, Z)
 
     def test_shape_3d(self):
         # All possible permutations for bins of different lengths in 3D.
         bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
             (4, 5, 6))
-        r = rand(10,3)
+        r = rand(10, 3)
         for b in bins:
             H, edges = histogramdd(r, b)
             assert(H.shape == b)
@@ -601,199 +601,208 @@
             (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
             (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
 
-        r = rand(10,4)
+        r = rand(10, 4)
         for b in bins:
             H, edges = histogramdd(r, b)
             assert(H.shape == b)
 
     def test_weights(self):
-        v = rand(100,2)
+        v = rand(100, 2)
         hist, edges = histogramdd(v)
         n_hist, edges = histogramdd(v, normed=True)
         w_hist, edges = histogramdd(v, weights=ones(100))
         assert_array_equal(w_hist, hist)
-        w_hist, edges = histogramdd(v, weights=ones(100)*2, normed=True)
+        w_hist, edges = histogramdd(v, weights=ones(100) * 2, normed=True)
         assert_array_equal(w_hist, n_hist)
-        w_hist, edges = histogramdd(v, weights=ones(100, int)*2)
-        assert_array_equal(w_hist, 2*hist)
+        w_hist, edges = histogramdd(v, weights=ones(100, int) * 2)
+        assert_array_equal(w_hist, 2 * hist)
 
     def test_identical_samples(self):
-        x = zeros((10,2),int)
+        x = zeros((10, 2), int)
         hist, edges = histogramdd(x, bins=2)
-        assert_array_equal(edges[0],array([-0.5,  0. ,  0.5]))
+        assert_array_equal(edges[0], array([-0.5, 0. , 0.5]))
 
 class TestUnique(TestCase):
     def test_simple(self):
-        x = array([4,3,2,1,1,2,3,4, 0])
-        assert(all(unique(x) == [0,1,2,3,4]))
-        assert(unique(array([1,1,1,1,1])) == array([1]))
+        x = array([4, 3, 2, 1, 1, 2, 3, 4, 0])
+        assert(all(unique(x) == [0, 1, 2, 3, 4]))
+        assert(unique(array([1, 1, 1, 1, 1])) == array([1]))
         x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham']
-        assert(all(unique(x) ==  ['bar', 'foo', 'ham', 'widget']))
-        x = array([5+6j, 1+1j, 1+10j, 10, 5+6j])
-        assert(all(unique(x) == [1+1j, 1+10j, 5+6j, 10]))
+        assert(all(unique(x) == ['bar', 'foo', 'ham', 'widget']))
+        x = array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j])
+        assert(all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10]))
 
 
 class TestCheckFinite(TestCase):
     def test_simple(self):
-        a = [1,2,3]
-        b = [1,2,inf]
-        c = [1,2,nan]
+        a = [1, 2, 3]
+        b = [1, 2, inf]
+        c = [1, 2, nan]
         numpy.lib.asarray_chkfinite(a)
         assert_raises(ValueError, numpy.lib.asarray_chkfinite, b)
         assert_raises(ValueError, numpy.lib.asarray_chkfinite, c)
 
 class TestNaNFuncts(TestCase):
     def setUp(self):
-        self.A = array([[[ nan,         0.01319214,  0.01620964],
-                         [ 0.11704017,  nan,         0.75157887],
-                         [ 0.28333658,  0.1630199 ,  nan       ]],
-                        [[ 0.59541557,  nan,         0.37910852],
-                         [ nan,         0.87964135,  nan       ],
-                         [ 0.70543747,  nan,         0.34306596]],
-                        [[ 0.72687499,  0.91084584,  nan       ],
-                         [ 0.84386844,  0.38944762,  0.23913896],
-                         [ nan,         0.37068164,  0.33850425]]])
+        self.A = array([[[ nan, 0.01319214, 0.01620964],
+                         [ 0.11704017, nan, 0.75157887],
+                         [ 0.28333658, 0.1630199 , nan       ]],
+                        [[ 0.59541557, nan, 0.37910852],
+                         [ nan, 0.87964135, nan       ],
+                         [ 0.70543747, nan, 0.34306596]],
+                        [[ 0.72687499, 0.91084584, nan       ],
+                         [ 0.84386844, 0.38944762, 0.23913896],
+                         [ nan, 0.37068164, 0.33850425]]])
 
     def test_nansum(self):
         assert_almost_equal(nansum(self.A), 8.0664079100000006)
-        assert_almost_equal(nansum(self.A,0),
-                            array([[ 1.32229056,  0.92403798,  0.39531816],
-                                   [ 0.96090861,  1.26908897,  0.99071783],
-                                   [ 0.98877405,  0.53370154,  0.68157021]]))
-        assert_almost_equal(nansum(self.A,1),
-                            array([[ 0.40037675,  0.17621204,  0.76778851],
-                                   [ 1.30085304,  0.87964135,  0.72217448],
-                                   [ 1.57074343,  1.6709751 ,  0.57764321]]))
-        assert_almost_equal(nansum(self.A,2),
-                            array([[ 0.02940178,  0.86861904,  0.44635648],
-                                   [ 0.97452409,  0.87964135,  1.04850343],
-                                   [ 1.63772083,  1.47245502,  0.70918589]]))
+        assert_almost_equal(nansum(self.A, 0),
+                            array([[ 1.32229056, 0.92403798, 0.39531816],
+                                   [ 0.96090861, 1.26908897, 0.99071783],
+                                   [ 0.98877405, 0.53370154, 0.68157021]]))
+        assert_almost_equal(nansum(self.A, 1),
+                            array([[ 0.40037675, 0.17621204, 0.76778851],
+                                   [ 1.30085304, 0.87964135, 0.72217448],
+                                   [ 1.57074343, 1.6709751 , 0.57764321]]))
+        assert_almost_equal(nansum(self.A, 2),
+                            array([[ 0.02940178, 0.86861904, 0.44635648],
+                                   [ 0.97452409, 0.87964135, 1.04850343],
+                                   [ 1.63772083, 1.47245502, 0.70918589]]))
 
     def test_nanmin(self):
         assert_almost_equal(nanmin(self.A), 0.01319214)
-        assert_almost_equal(nanmin(self.A,0),
-                            array([[ 0.59541557,  0.01319214,  0.01620964],
-                                   [ 0.11704017,  0.38944762,  0.23913896],
-                                   [ 0.28333658,  0.1630199 ,  0.33850425]]))
-        assert_almost_equal(nanmin(self.A,1),
-                            array([[ 0.11704017,  0.01319214,  0.01620964],
-                                   [ 0.59541557,  0.87964135,  0.34306596],
-                                   [ 0.72687499,  0.37068164,  0.23913896]]))
-        assert_almost_equal(nanmin(self.A,2),
-                            array([[ 0.01319214,  0.11704017,  0.1630199 ],
-                                   [ 0.37910852,  0.87964135,  0.34306596],
-                                   [ 0.72687499,  0.23913896,  0.33850425]]))
+        assert_almost_equal(nanmin(self.A, 0),
+                            array([[ 0.59541557, 0.01319214, 0.01620964],
+                                   [ 0.11704017, 0.38944762, 0.23913896],
+                                   [ 0.28333658, 0.1630199 , 0.33850425]]))
+        assert_almost_equal(nanmin(self.A, 1),
+                            array([[ 0.11704017, 0.01319214, 0.01620964],
+                                   [ 0.59541557, 0.87964135, 0.34306596],
+                                   [ 0.72687499, 0.37068164, 0.23913896]]))
+        assert_almost_equal(nanmin(self.A, 2),
+                            array([[ 0.01319214, 0.11704017, 0.1630199 ],
+                                   [ 0.37910852, 0.87964135, 0.34306596],
+                                   [ 0.72687499, 0.23913896, 0.33850425]]))
         assert nanmin([nan, nan]) is nan
 
     def test_nanargmin(self):
         assert_almost_equal(nanargmin(self.A), 1)
-        assert_almost_equal(nanargmin(self.A,0),
+        assert_almost_equal(nanargmin(self.A, 0),
                             array([[1, 0, 0],
                                    [0, 2, 2],
                                    [0, 0, 2]]))
-        assert_almost_equal(nanargmin(self.A,1),
+        assert_almost_equal(nanargmin(self.A, 1),
                             array([[1, 0, 0],
                                    [0, 1, 2],
                                    [0, 2, 1]]))
-        assert_almost_equal(nanargmin(self.A,2),
+        assert_almost_equal(nanargmin(self.A, 2),
                             array([[1, 0, 1],
                                    [2, 1, 2],
                                    [0, 2, 2]]))
 
     def test_nanmax(self):
         assert_almost_equal(nanmax(self.A), 0.91084584000000002)
-        assert_almost_equal(nanmax(self.A,0),
-                            array([[ 0.72687499,  0.91084584,  0.37910852],
-                                   [ 0.84386844,  0.87964135,  0.75157887],
-                                   [ 0.70543747,  0.37068164,  0.34306596]]))
-        assert_almost_equal(nanmax(self.A,1),
-                            array([[ 0.28333658,  0.1630199 ,  0.75157887],
-                                   [ 0.70543747,  0.87964135,  0.37910852],
-                                   [ 0.84386844,  0.91084584,  0.33850425]]))
-        assert_almost_equal(nanmax(self.A,2),
-                            array([[ 0.01620964,  0.75157887,  0.28333658],
-                                   [ 0.59541557,  0.87964135,  0.70543747],
-                                   [ 0.91084584,  0.84386844,  0.37068164]]))
+        assert_almost_equal(nanmax(self.A, 0),
+                            array([[ 0.72687499, 0.91084584, 0.37910852],
+                                   [ 0.84386844, 0.87964135, 0.75157887],
+                                   [ 0.70543747, 0.37068164, 0.34306596]]))
+        assert_almost_equal(nanmax(self.A, 1),
+                            array([[ 0.28333658, 0.1630199 , 0.75157887],
+                                   [ 0.70543747, 0.87964135, 0.37910852],
+                                   [ 0.84386844, 0.91084584, 0.33850425]]))
+        assert_almost_equal(nanmax(self.A, 2),
+                            array([[ 0.01620964, 0.75157887, 0.28333658],
+                                   [ 0.59541557, 0.87964135, 0.70543747],
+                                   [ 0.91084584, 0.84386844, 0.37068164]]))
 
     def test_nanmin_allnan_on_axis(self):
-        assert_array_equal(isnan(nanmin([[nan]*2]*3, axis=1)),
+        assert_array_equal(isnan(nanmin([[nan] * 2] * 3, axis=1)),
                      [True, True, True])
 
+    def test_nanmin_masked(self):
+        a = np.ma.fix_invalid([[2, 1, 3, nan], [5, 2, 3, nan]])
+        ctrl_mask = a._mask.copy()
+        test = np.nanmin(a, axis=1)
+        assert_equal(test, [1, 2])
+        assert_equal(a._mask, ctrl_mask)
+        assert_equal(np.isinf(a), np.zeros((2, 4), dtype=bool))
 
+
+
 class TestCorrCoef(TestCase):
     def test_simple(self):
-        A = array([[ 0.15391142,  0.18045767,  0.14197213],
-                   [ 0.70461506,  0.96474128,  0.27906989],
-                   [ 0.9297531 ,  0.32296769,  0.19267156]])
-        B = array([[ 0.10377691,  0.5417086 ,  0.49807457],
-                   [ 0.82872117,  0.77801674,  0.39226705],
-                   [ 0.9314666 ,  0.66800209,  0.03538394]])
+        A = array([[ 0.15391142, 0.18045767, 0.14197213],
+                   [ 0.70461506, 0.96474128, 0.27906989],
+                   [ 0.9297531 , 0.32296769, 0.19267156]])
+        B = array([[ 0.10377691, 0.5417086 , 0.49807457],
+                   [ 0.82872117, 0.77801674, 0.39226705],
+                   [ 0.9314666 , 0.66800209, 0.03538394]])
         assert_almost_equal(corrcoef(A),
-                            array([[ 1.        ,  0.9379533 , -0.04931983],
-                                   [ 0.9379533 ,  1.        ,  0.30007991],
-                                   [-0.04931983,  0.30007991,  1.        ]]))
-        assert_almost_equal(corrcoef(A,B),
-                            array([[ 1.        ,  0.9379533 , -0.04931983,
-                                     0.30151751,  0.66318558, 0.51532523],
-                                   [ 0.9379533 ,  1.        , 0.30007991,
-                                     -0.04781421,  0.88157256, 0.78052386],
-                                   [-0.04931983,  0.30007991,  1.        ,
-                                     -0.96717111,  0.71483595, 0.83053601],
+                            array([[ 1.        , 0.9379533 , -0.04931983],
+                                   [ 0.9379533 , 1.        , 0.30007991],
+                                   [-0.04931983, 0.30007991, 1.        ]]))
+        assert_almost_equal(corrcoef(A, B),
+                            array([[ 1.        , 0.9379533 , -0.04931983,
+                                     0.30151751, 0.66318558, 0.51532523],
+                                   [ 0.9379533 , 1.        , 0.30007991,
+                                     - 0.04781421, 0.88157256, 0.78052386],
+                                   [-0.04931983, 0.30007991, 1.        ,
+                                     - 0.96717111, 0.71483595, 0.83053601],
                                    [ 0.30151751, -0.04781421, -0.96717111,
                                      1.        , -0.51366032, -0.66173113],
-                                   [ 0.66318558,  0.88157256,  0.71483595,
-                                     -0.51366032,  1.        , 0.98317823],
-                                   [ 0.51532523,  0.78052386,  0.83053601,
-                                     -0.66173113,  0.98317823, 1.        ]]))
+                                   [ 0.66318558, 0.88157256, 0.71483595,
+                                     - 0.51366032, 1.        , 0.98317823],
+                                   [ 0.51532523, 0.78052386, 0.83053601,
+                                     - 0.66173113, 0.98317823, 1.        ]]))
 
 
 
 class Test_i0(TestCase):
     def test_simple(self):
         assert_almost_equal(i0(0.5), array(1.0634833707413234))
-        A = array([ 0.49842636,  0.6969809 ,  0.22011976,  0.0155549])
+        A = array([ 0.49842636, 0.6969809 , 0.22011976, 0.0155549])
         assert_almost_equal(i0(A),
-                            array([ 1.06307822,  1.12518299,  1.01214991,  1.00006049]))
-        B = array([[ 0.827002  ,  0.99959078],
-                   [ 0.89694769,  0.39298162],
-                   [ 0.37954418,  0.05206293],
-                   [ 0.36465447,  0.72446427],
-                   [ 0.48164949,  0.50324519]])
+                            array([ 1.06307822, 1.12518299, 1.01214991, 1.00006049]))
+        B = array([[ 0.827002  , 0.99959078],
+                   [ 0.89694769, 0.39298162],
+                   [ 0.37954418, 0.05206293],
+                   [ 0.36465447, 0.72446427],
+                   [ 0.48164949, 0.50324519]])
         assert_almost_equal(i0(B),
-                            array([[ 1.17843223,  1.26583466],
-                                   [ 1.21147086,  1.0389829 ],
-                                   [ 1.03633899,  1.00067775],
-                                   [ 1.03352052,  1.13557954],
-                                   [ 1.0588429 ,  1.06432317]]))
+                            array([[ 1.17843223, 1.26583466],
+                                   [ 1.21147086, 1.0389829 ],
+                                   [ 1.03633899, 1.00067775],
+                                   [ 1.03352052, 1.13557954],
+                                   [ 1.0588429 , 1.06432317]]))
 
 class TestKaiser(TestCase):
     def test_simple(self):
-        assert_almost_equal(kaiser(0,1.0), array([]))
-        assert isnan(kaiser(1,1.0))
-        assert_almost_equal(kaiser(2,1.0), array([ 0.78984831,  0.78984831]))
-        assert_almost_equal(kaiser(5,1.0),
-                            array([ 0.78984831,  0.94503323,  1.        ,
-                                    0.94503323,  0.78984831]))
-        assert_almost_equal(kaiser(5,1.56789),
-                            array([ 0.58285404,  0.88409679,  1.        ,
-                                    0.88409679,  0.58285404]))
+        assert_almost_equal(kaiser(0, 1.0), array([]))
+        assert isnan(kaiser(1, 1.0))
+        assert_almost_equal(kaiser(2, 1.0), array([ 0.78984831, 0.78984831]))
+        assert_almost_equal(kaiser(5, 1.0),
+                            array([ 0.78984831, 0.94503323, 1.        ,
+                                    0.94503323, 0.78984831]))
+        assert_almost_equal(kaiser(5, 1.56789),
+                            array([ 0.58285404, 0.88409679, 1.        ,
+                                    0.88409679, 0.58285404]))
 
     def test_int_beta(self):
         kaiser(3, 4)
 
 class TestMsort(TestCase):
     def test_simple(self):
-        A = array([[ 0.44567325,  0.79115165,  0.5490053 ],
-                   [ 0.36844147,  0.37325583,  0.96098397],
-                   [ 0.64864341,  0.52929049,  0.39172155]])
+        A = array([[ 0.44567325, 0.79115165, 0.5490053 ],
+                   [ 0.36844147, 0.37325583, 0.96098397],
+                   [ 0.64864341, 0.52929049, 0.39172155]])
         assert_almost_equal(msort(A),
-                            array([[ 0.36844147,  0.37325583,  0.39172155],
-                                   [ 0.44567325,  0.52929049,  0.5490053 ],
-                                   [ 0.64864341,  0.79115165,  0.96098397]]))
+                            array([[ 0.36844147, 0.37325583, 0.39172155],
+                                   [ 0.44567325, 0.52929049, 0.5490053 ],
+                                   [ 0.64864341, 0.79115165, 0.96098397]]))
 
 class TestMeshgrid(TestCase):
     def test_simple(self):
-        [X, Y] = meshgrid([1,2,3], [4,5,6,7])
+        [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7])
         assert all(X == array([[1, 2, 3],
                                [1, 2, 3],
                                [1, 2, 3],
@@ -827,7 +836,7 @@
         assert_array_equal(x, [1, 0])
 
 
-        x = piecewise([0, 0], [[False, True]], [lambda x: -1])
+        x = piecewise([0, 0], [[False, True]], [lambda x:-1])
         assert_array_equal(x, [0, -1])
 
         x = piecewise([1, 2], [[True, False], [False, True]], [3, 4])
@@ -844,7 +853,7 @@
 
     def test_0d(self):
         x = array(3)
-        y = piecewise(x, x>3, [4, 0])
+        y = piecewise(x, x > 3, [4, 0])
         assert y.ndim == 0
         assert y == 0
 
@@ -869,9 +878,9 @@
         y = np.bincount(x, w)
         assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1]))
 
-def compare_results(res,desired):
+def compare_results(res, desired):
     for i in range(len(desired)):
-        assert_array_equal(res[i],desired[i])
+        assert_array_equal(res[i], desired[i])
 
 if __name__ == "__main__":
     run_module_suite()



More information about the Numpy-svn mailing list