[Numpy-tickets] [NumPy] #575: fast putmask implementation does not work on big-endian systems

NumPy numpy-tickets@scipy....
Sat Aug 25 16:22:12 CDT 2007


#575: fast putmask implementation does not work on big-endian systems
------------------------+---------------------------------------------------
 Reporter:  chanley     |       Owner:  stefan       
     Type:  defect      |      Status:  new          
 Priority:  highest     |   Milestone:  1.0.4 Release
Component:  numpy.core  |     Version:  devel        
 Severity:  blocker     |    Keywords:               
------------------------+---------------------------------------------------
 The fast putmask implementation introduced in r3981 does not work on big-
 endian machines.  The record array test added in r3982 confirms this fact.

 {{{
 ======================================================================
 FAIL: test_record_array (numpy.core.tests.test_multiarray.test_putmask)
 ----------------------------------------------------------------------
 Traceback (most recent call last):
   File "/data/basil5/site-
 packages/lib/python/numpy/core/tests/test_multiarray.p
 y", line 450, in test_record_array
     assert_array_equal(rec['x'],[10,5])
   File "/data/basil5/site-packages/lib/python/numpy/testing/utils.py",
 line 223,
  in assert_array_equal
     verbose=verbose, header='Arrays are not equal')
   File "/data/basil5/site-packages/lib/python/numpy/testing/utils.py",
 line 215,
  in assert_array_compare
     assert cond, msg
 AssertionError:
 Arrays are not equal

 (mismatch 50.0%)
  x: array([  4.58492919e-320,   5.00000000e+000])
  y: array([10,  5])

 ----------------------------------------------------------------------
 Ran 673 tests in 13.436s

 FAILED (failures=1)
 <unittest.TextTestRunner object at 0x565f70>
 >>> numpy.__version__
 '1.0.4.dev4011'
 >>>

 }}}

 This test does pass on our Redhat Enterprise systems which our little-
 endian.

-- 
Ticket URL: <http://projects.scipy.org/scipy/numpy/ticket/575>
NumPy <http://projects.scipy.org/scipy/numpy>
The fundamental package needed for scientific computing with Python.


More information about the Numpy-tickets mailing list