[Scipy-svn] r3343 - trunk/scipy/special/tests

scipy-svn@scip... scipy-svn@scip...
Thu Sep 20 18:19:38 CDT 2007


Author: jarrod.millman
Date: 2007-09-20 18:19:34 -0500 (Thu, 20 Sep 2007)
New Revision: 3343

Removed:
   trunk/scipy/special/tests/Test.py
Log:
removed old file


Deleted: trunk/scipy/special/tests/Test.py
===================================================================
--- trunk/scipy/special/tests/Test.py	2007-09-20 22:33:12 UTC (rev 3342)
+++ trunk/scipy/special/tests/Test.py	2007-09-20 23:19:34 UTC (rev 3343)
@@ -1,100 +0,0 @@
-#!/usr/bin/env python
-#
-import pickle
-import Numeric, cephes, RandomArray
-import sys
-
-class Test:
-
-    """
-    There are two reasons why we don't rely on test.regrtest:
-    first, putting the expected results inside the test_
-    script would lead to very small coverage, or VERY HUGE test_
-    files; second, I liked the idea of trying to evenly cover the
-    configuration space, avoiding deterministic lattices; third, I never
-    pickled variables, and wanted to try!  """
-
-    def __init__(self,fn,fnname,**args):
-        self.name=fnname
-        self.reffile='ref_'+self.name+'.pkl'
-        self.call=fn
-        self.vars_read=(0==1)
-        if args.has_key('ref'):
-            self.ref = args['ref']
-        else:
-            self.ref = (0 == 1)
-        self.in_vars=args['in_vars']
-        self.out_vars=args['out_vars']
-        if args.has_key('tries'):
-            self.tries=args['tries']
-        else:
-            self.tries=100
-
-    def _readref(self):
-        if not self.ref:
-            f=open(self.reffile,'r')
-            p=Numeric.Unpickler(f)
-            for t in self.in_vars.keys():
-                self.in_vars[t]=p.load()
-            for t in self.out_vars.keys():
-                self.out_vars[t]=p.load()
-            f.close()
-            self.vars_read=(0==0)
-
-    def _genref(self):
-        if self.ref:
-            f=open(self.reffile,'w')
-            p=Numeric.Pickler(f)
-            for t in self.in_vars.keys():
-                self.in_vars[t]=self._gen_array(self.in_vars[t])
-                p.dump(self.in_vars[t])
-            self._compute()
-            if type (self.result) != type (()): self.result=self.result,
-            for t in self.result:
-                p.dump(t)
-            f.close
-
-    def _gen_array(self,limits):
-        seed=RandomArray.seed
-        random=RandomArray.uniform
-        for t in limits:
-            if type(t)==type(0.+0.j): _complex=(0==0)
-            else: _complex=(0==1)
-        if _complex:
-            seed()
-            minr=min(limits[0].real,limits[1].real)
-            maxr=max(limits[0].real,limits[1].real)
-            mini=min(limits[0].imag,limits[1].imag)
-            maxi=max(limits[0].imag,limits[1].imag)
-            a=random(minr,maxr,(self.tries,))+0.j
-            a.imag=random(mini,maxi,(self.tries,))
-        else:
-            minr=min(limits[0],limits[1])
-            maxr=max(limits[0],limits[1])
-            a=random(minr,maxr,(self.tries,))
-        return a
-
-    def _compute(self):
-        self.result=apply(self.call,tuple(self.in_vars.values()))
-
-    def test(self):
-        self.max_rel_dev=[]
-        if self.ref:
-            self._genref()
-        else:
-            if not self.vars_read:
-                self._readref()
-            self._compute()
-            if type (self.result) != type(()): self.result=self.result,
-            for t in range(len(self.out_vars.keys())):
-                dev=abs(self.result[t]-self.out_vars[self.out_vars.keys()[t]])
-                ref=abs(self.result[t]+self.out_vars[self.out_vars.keys()[t]])/2
-                mx_dev_idx=Numeric.argmax(dev,axis=-1)
-                if dev[mx_dev_idx] > 0.:
-                    if ref[mx_dev_idx] > 0.:
-                        self.max_rel_dev.append(dev[mx_dev_idx]/ref[mx_dev_idx])
-                    else:
-                        self.max_rel_dev.append(1.e+38)
-        if len(self.max_rel_dev)>0:
-            return max(self.max_rel_dev)
-        return 0



More information about the Scipy-svn mailing list