[Scipy-svn] r4476 - in trunk/scipy/sparse: . linalg/eigen/lobpcg linalg/isolve

scipy-svn@scip... scipy-svn@scip...
Tue Jun 24 08:53:51 CDT 2008


Author: wnbell
Date: 2008-06-24 08:53:46 -0500 (Tue, 24 Jun 2008)
New Revision: 4476

Modified:
   trunk/scipy/sparse/base.py
   trunk/scipy/sparse/construct.py
   trunk/scipy/sparse/linalg/eigen/lobpcg/lobpcg.py
   trunk/scipy/sparse/linalg/isolve/utils.py
Log:
edited a few docstrings


Modified: trunk/scipy/sparse/base.py
===================================================================
--- trunk/scipy/sparse/base.py	2008-06-24 11:41:19 UTC (rev 4475)
+++ trunk/scipy/sparse/base.py	2008-06-24 13:53:46 UTC (rev 4476)
@@ -195,13 +195,14 @@
         """Return this matrix in a given sparse format
 
         Parameters
-        ==========
-            - format : desired sparse matrix format
-              - If format is None then no conversion is performed
-              - Other possible values include:
-                -  "csr" for csr_matrix format
-                -  "csc" for csc_matrix format
-                -  "dok" for dok_matrix format and so on
+        ----------
+        format : {string, None}
+            desired sparse matrix format
+                - None for no format conversion
+                - "csr" for csr_matrix format
+                - "csc" for csc_matrix format
+                - "lil" for lil_matrix format
+                - "dok" for dok_matrix format and so on
 
         """
 

Modified: trunk/scipy/sparse/construct.py
===================================================================
--- trunk/scipy/sparse/construct.py	2008-06-24 11:41:19 UTC (rev 4475)
+++ trunk/scipy/sparse/construct.py	2008-06-24 13:53:46 UTC (rev 4476)
@@ -27,30 +27,32 @@
 
 
 def spdiags(data, diags, m, n, format=None):
-    """Return a sparse matrix given its diagonals.
+    """Return a sparse matrix from diagonals.
 
     Parameters
     ----------
-        - data   : matrix whose rows contain the diagonal values
-        - diags  : diagonals to set
-            - k = 0 - the main diagonal
-            - k > 0 - the k-th upper diagonal
-            - k < 0 - the k-th lower diagonal
-        - m, n   : dimensions of the result
-        - format : format of the result (e.g. "csr")
-            -  By default (format=None) an appropriate sparse matrix
-               format is returned.  This choice is subject to change.
+    data   : array_like
+        matrix diagonals stored row-wise
+    diags  : diagonals to set
+        - k = 0  the main diagonal
+        - k > 0  the k-th upper diagonal
+        - k < 0  the k-th lower diagonal
+    m, n : int
+        shape of the result
+    format : format of the result (e.g. "csr")
+        By default (format=None) an appropriate sparse matrix
+        format is returned.  This choice is subject to change.
 
     See Also
     --------
-        The dia_matrix class which implements the DIAgonal format.
+    The dia_matrix class which implements the DIAgonal format.
 
     Example
     -------
 
-    >>> data = array([[1,2,3,4]]).repeat(3,axis=0)
+    >>> data = array([[1,2,3,4],[1,2,3,4],[1,2,3,4]])
     >>> diags = array([0,-1,2])
-    >>> spdiags(data,diags,4,4).todense()
+    >>> spdiags(data, diags, 4, 4).todense()
     matrix([[1, 0, 3, 0],
             [1, 2, 0, 4],
             [0, 2, 3, 0],
@@ -87,8 +89,12 @@
 
     Parameters
     ----------
-    A,B    : dense or sparse matrices
-    format : format of the result (e.g. "csr")
+    A
+        matrix
+    B
+        matrix
+    format : string
+        format of the result (e.g. "csr")
 
     Returns
     -------
@@ -169,15 +175,19 @@
 
     Parameters
     ----------
-    A,B    : square dense or sparse matrices
-    format : format of the result (e.g. "csr")
+    A
+        square matrix
+    B
+        square matrix
+    format : string
+        format of the result (e.g. "csr")
 
     Returns
-    =======
-        kronecker sum in a sparse matrix format
+    -------
+    kronecker sum in a sparse matrix format
 
     Examples
-    ========
+    --------
 
 
     """
@@ -206,7 +216,8 @@
 
     blocks
         sequence of sparse matrices with compatible shapes
-    format : sparse format of the result (e.g. "csr")
+    format : string
+        sparse format of the result (e.g. "csr")
         by default an appropriate sparse matrix format is returned.
         This choice is subject to change.
 
@@ -232,7 +243,8 @@
 
     blocks
         sequence of sparse matrices with compatible shapes
-    format : sparse format of the result (e.g. "csr")
+    format : string
+        sparse format of the result (e.g. "csr")
         by default an appropriate sparse matrix format is returned.
         This choice is subject to change.
 

Modified: trunk/scipy/sparse/linalg/eigen/lobpcg/lobpcg.py
===================================================================
--- trunk/scipy/sparse/linalg/eigen/lobpcg/lobpcg.py	2008-06-24 11:41:19 UTC (rev 4475)
+++ trunk/scipy/sparse/linalg/eigen/lobpcg/lobpcg.py	2008-06-24 13:53:46 UTC (rev 4476)
@@ -5,7 +5,7 @@
 
 License: BSD
 
-(c) Robert Cimrman, Andrew Knyazev
+Authors: Robert Cimrman, Andrew Knyazev
 
 Examples in tests directory contributed by Nils Wagner.
 """
@@ -91,8 +91,9 @@
     Example
     -------
 
-    A = makeOperator( arrayA, (n, n) )
-    vectorB = A( vectorX )
+    >>> A = makeOperator( arrayA, (n, n) )
+    >>> vectorB = A( vectorX )
+
     """
     if operatorInput is None:
         def ident(x):
@@ -203,8 +204,8 @@
     Notes
     -----
     If both retLambdaHistory and retResidualNormsHistory are True, the
-    return tuple has the following format:
-        (lambda, V, lambda history, residual norms history)
+    return tuple has the following format
+    (lambda, V, lambda history, residual norms history)
 
     """
     failureFlag = True

Modified: trunk/scipy/sparse/linalg/isolve/utils.py
===================================================================
--- trunk/scipy/sparse/linalg/isolve/utils.py	2008-06-24 11:41:19 UTC (rev 4475)
+++ trunk/scipy/sparse/linalg/isolve/utils.py	2008-06-24 13:53:46 UTC (rev 4476)
@@ -1,3 +1,7 @@
+__docformat__ = "restructuredtext en"
+
+__all__ = [] 
+
 from warnings import warn
 
 from numpy import asanyarray, asarray, asmatrix, array, matrix, zeros
@@ -24,27 +28,34 @@
 def make_system(A, M, x0, b, xtype=None):
     """Make a linear system Ax=b
 
-    Parameters:
-        A - LinearOperator
-            - sparse or dense matrix (or any valid input to aslinearoperator)
-        M - LinearOperator or None
-            - preconditioner
-            - sparse or dense matrix (or any valid input to aslinearoperator)
-        x0 - array_like or None
-            - initial guess to iterative method
-        b  - array_like
-            - right hand side
-        xtype - None or one of 'fdFD'
-            - dtype of the x vector
+    Parameters
+    ----------
+    A : LinearOperator
+        sparse or dense matrix (or any valid input to aslinearoperator)
+    M : {LinearOperator, Nones}
+        preconditioner
+        sparse or dense matrix (or any valid input to aslinearoperator)
+    x0 : {array_like, None}
+        initial guess to iterative method
+    b : array_like
+        right hand side
+    xtype : {'f', 'd', 'F', 'D', None}
+        dtype of the x vector
 
-    Returns:
-        (A, M, x, b, postprocess) where:
-            - A is a LinearOperator
-            - M is a LinearOperator
-            - x is the initial guess (rank 1 array)
-            - b is the rhs (rank 1 array)
-            - postprocess is a function that converts the solution vector
-              to the appropriate type and dimensions (e.g. (N,1) matrix)
+    Returns
+    -------
+    (A, M, x, b, postprocess)
+        A : LinearOperator
+            matrix of the linear system
+        M : LinearOperator
+            preconditioner
+        x : rank 1 ndarray
+            initial guess
+        b : rank 1 ndarray
+            right hand side
+        postprocess : function
+            converts the solution vector to the appropriate 
+            type and dimensions (e.g. (N,1) matrix)
 
     """
     A_ = A



More information about the Scipy-svn mailing list