# [SciPy-User] idiom for iterators, expr(T) if isscalar(T) else array([expr(t) for t in T])

josef.pktd@gmai... josef.pktd@gmai...
Thu Oct 15 10:56:26 CDT 2009

```On Wed, Oct 14, 2009 at 1:23 PM, denis <denis-bz-gg@t-online.de> wrote:
> On Oct 14, 2:02 pm, Yosef Meller <yosef...@post.tau.ac.il> wrote:
>
>> v_expr = numpy.vectorize(expr)
>> v_expr(T)
>>
>> Is that what you wanted?
>
>
> Yosef,
>  thanks, the right direction -- there must be a numpy primitive for
> this.
> But 2 problems with vectorize:
> 1) an optional arg => TypeError: __call__() got an unexpected keyword
> argument 'h'
> 2) vectorize => broadcasting => ValueError
> Here's a test case: ugly, but funciter() is at least correct :)

broadcasting is nice, two changes below and it produces an output
without exception.
I didn't check whether the output makes sense. I guess vectorize still
needs to have compatible array dimension in its arguments for

Josef

>
>
> """ funciter, vectorize ?  14oct """
> import numpy as np
>
> def spline_2p2s( t, p0, p1, m0, m1, h=1 ):
>    """ Hermite 2-point, 2-slope spline
>        t: a scalar / range / iterator
>        p0 p1 m0 m1: scalars or arrays
>        Beware: t and p0 both vecs => broadcasting =>
>            ValueError: shape mismatch: objects cannot be broadcast to
> a single shape
>        (need guidelines, axioms on broadcasting)
>    """
>    def f(t):
>        t2 = t*t
>        t3 = t2*t
>        return (
>              p0 * (2*t3 - 3*t2 + 1)
>            + p1 * (-2*t3 + 3*t2)
>            + m0 * h * (t3 - 2*t2 + t)
>            + m1 * h * (t3 - t2) )

change number 1

-    return funciter( f, t )
+   return f(t) #funciter( f, t )
>
> def funciter( f, T ):
>    return f(T) if np.isscalar(T) \
>        else np.array([ f(t) for t in T ])
>
> #...............................................................................
> if __name__ == "__main__":

change number two:

-    t = np.arange( 0, 1.01, .1 )
+   t = np.arange( 0, 1.01, .1 )[:,None]

>    p0 = np.array(( 0, 0 ))
>    p1 = np.array(( 1, 0 ))
>    m0 = np.array(( 1, 1 ))
>    m1 = np.array(( 1, -1 ))
>
>    s = spline_2p2s( t, p0, p1, m0, m1 )
>    print "spline_2p2s", s.T
>
>    spline_2p2s_vec = np.vectorize( spline_2p2s )
>    s = spline_2p2s_vec( t, p0, p1, m0, m1 )
>    print "spline_2p2s_vec", s.T
> _______________________________________________
> SciPy-User mailing list
> SciPy-User@scipy.org
> http://mail.scipy.org/mailman/listinfo/scipy-user
>
```