[Numpy-discussion] Distance Matrix speed
Alan G Isaac
aisaac at american.edu
Sun Jun 18 21:05:51 CDT 2006
On Sun, 18 Jun 2006, Sebastian Beca apparently wrote:
> def dist():
> d = zeros([N, C], dtype=float)
> if N < C: for i in range(N):
> xy = A[i] - B d[i,:] = sqrt(sum(xy**2, axis=1))
> return d
> else:
> for j in range(C):
> xy = A - B[j] d[:,j] = sqrt(sum(xy**2, axis=1))
> return d
But that is 50% slower than Johannes's version:
def dist_loehner1():
d = A[:, newaxis, :] - B[newaxis, :, :]
d = sqrt((d**2).sum(axis=2))
return d
Cheers,
Alan Isaac
More information about the Numpy-discussion
mailing list