[Numpy-discussion] np.nan and ``is``
Christian Heimes
lists@cheimes...
Fri Sep 19 15:04:19 CDT 2008
Andrew Dalke wrote:
> There are a few things that Python-the-language guarantees are singleton
> objects which can be compared correctly with "is". Those are:
>
> True, False, None
The empty tuple () and all interned strings are also guaranteed to be
singletons. String interning is used to optimize code on C level. It's
much faster to compare memory addresses than objects. All strings can be
interned through the builtin function intern like s = intern(s). For
Python 3.x the function was moved in the the sys module and changed to
support str which are PyUnicode objects.
> So, back to NaN. There's no guarantee NaN is a singleton
> object, so testing with "is" almost certainly is wrong.
> In fact, at the bit-level there are multiple NaNs. A
> NaN (according to Wikipedia) fits the following bit pattern.
>
> NaN: x11111111axxxxxxxxxxxxxxxxxxxxxx. x = undefined. If a = 1,
>
> it is a quiet NaN, otherwise it is a signalling NaN.
The definition is correct for all doubles on IEEE 754 aware platforms.
Python's float type uses the double C type. Almost all modern computers
have either hardware IEEE 754 support or software support for embedded
devices (some mobile phones and PDAs).
http://en.wikipedia.org/wiki/IEEE_754-1985
The Python core makes no difference between quiet NaNs and signaling
NaNs. Only errno, input and output values are checked to raise an
exception. We were discussion the possibility of a NaN singleton during
our revamp of Python's IEEE 754 and math support for Python 2.6 and 3.0.
But we decided against it because the extra code and cost wasn't worth
the risks. Instead I added isnan() and isinf() to the math module.
All checks for NaN, inf and the sign bit of a float must be made through
the appropriate APIs - either the NumPy API or the new APIs for floats.
Hope to shed some light on things
Christian
More information about the Numpy-discussion
mailing list