# [Numpy-discussion] Slow divide of int64?

Matthew Brett matthew.brett@gmail....
Sat Aug 11 19:36:28 CDT 2012

```Hi,

A friend of mine just pointed out that dividing by int64 is
considerably slower than multiplying in numpy:

<script>
from timeit import timeit

import numpy as np
import numpy.random as npr

sz = (1024,)
a32 = npr.randint(1, 5001, sz).astype(np.int32)
b32 = npr.randint(1, 5001, sz).astype(np.int32)
a64 = a32.astype(np.int64)
b64 = b32.astype(np.int64)

print 'Mul32', timeit('d = a32 * b32', 'from __main__ import a32, b32')
print 'Div32', timeit('d = a32 / b32', 'from __main__ import a32, b32')
print 'Mul64', timeit('d = a64 * b64', 'from __main__ import a64, b64')
print 'Div64', timeit('d = a64 / b64', 'from __main__ import a64, b64')
</script>

gives (64 bit Debian Intel system, numpy trunk):

Mul32 2.71295905113
Div32 6.61985301971
Mul64 2.78101611137
Div64 22.8217148781

with similar values for numpy 1.5.1.

Crude testing with Matlab and Octave suggests they do not seem to have
this same difference:

>> divtest
Mul32 4.300662
Div32 5.638622
Mul64 7.894490
Div64 18.121182

octave:2> divtest
Mul32 3.960577
Div32 6.553704
Mul64 7.268324
Div64 13.670760

(files attached)

Is there something specific about division in numpy that would cause
this slowdown?

Cheers,

Matthew
-------------- next part --------------
A non-text attachment was scrubbed...
Name: divtest.m
Type: application/octet-stream
Size: 343 bytes
Desc: not available
Url : http://mail.scipy.org/pipermail/numpy-discussion/attachments/20120811/fd70e1e2/attachment.obj
-------------- next part --------------
A non-text attachment was scrubbed...
Name: timeit.m
Type: application/octet-stream
Size: 64 bytes
Desc: not available
Url : http://mail.scipy.org/pipermail/numpy-discussion/attachments/20120811/fd70e1e2/attachment-0001.obj
```